Coherent Backscattering of Ultra-cold Atoms
Abstract
We report on the direct observation of coherent backscattering (CBS) of ultra-cold atoms, in a quasi two dimensional configuration. Launching atoms with a well defined momentum in a laser speckle disordered potential, we follow the progressive build up of the momentum scattering pattern, consisting of a ring associated with multiple elastic scattering, and the CBS peak in the backward direction. Monitoring the depletion of the initial momentum component and the formation of the angular ring profile allow us to determine microscopic transport quantities. The time resolved evolution of the CBS peak is studied and is found a fair agreement with predictions, at long times as well as at short times. The observation of CBS can be considered a direct signature of coherence in quantum transport of particles in disordered media. It is responsible for the so called weak localization phenomenon, which is the precursor of Anderson localization.
Origin | Files produced by the author(s) |
---|