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Differential polarizability at 1064 nm of the strontium intercombination transition

Romaric Journet, Félix Faisant,∗ Sanghyeop Lee, and Marc Cheneau
Université Paris Saclay, Institut d’Optique Graduate School,
CNRS, Laboratoire Charles Fabry, 91127, Palaiseau, France

(Dated: May 29, 2024)

We measure the scalar, vector and tensor components of the differential dynamic polarizability of
the strontium intercombination transition at 1064 nm. We compare the experimental values with the
theoretical prediction based on the most recently published spectroscopic data, and find a very good
agreement. We also identify a close-to-circular ‘magic’ polarization where the differential polariz-
ability strictly vanishes, and precisely determine its ellipticity. Our work opens new perspectives for
laser cooling optically trapped strontium atoms, and provides a new benchmark for atomic models
in the near infrared spectral range.

I. INTRODUCTION

Ultracold gases of alkaline-earth and alkaline-earth-like
atoms have long been identified as a promising platform
for quantum computation and quantum simulation, with
distinct advantages compared to alkaline atoms [1–5].
One is the decoupling between the S1 0 electronic ground
state and the nuclear spin, which opens up the possibility
to encode and manipulate well isolated qubits [6–8], or
to simulate many-body phenomena with SU(n) symme-
try, where n is the number of nuclear spin states and can
be as large as 10 for Sr87 [9, 10]. Another is the series
of narrow and ultra-narrow transitions from the singlet
ground state to the triplet excited states P3 J , which can
be leveraged, for instance, for metrological applications
[11, 12], or laser cooling to extremely low temperatures
[13]. Last but not least, they offer the prospect of using
the optical transitions of the secondary valence electron
to image or confine atoms in a Rydberg state [14].

Recently, a new generation of experiments has flour-
ished, which exploit these properties with strontium
atoms confined in optical microtraps, whether optical
tweezer arrays [15–20], optical lattices [18, 21], or a com-
bination of both [22, 23]. In order to design such exper-
iments, it is essential to have a good knowledge of the
dynamic polarizability at the trapping wavelength. For
instance, the performance of laser cooling on the S1 0–
P3 1 intercombination transition inside a microtrap cru-

cially depends on the differential dynamic polarizability
between the ground and excited states: When both states
have equal polarizabilities, resolved sideband cooling is
known to be a powerful technique which can reduce the
atomic motion to the vibrational ground state [15, 16];
When the excited state has a larger dynamic polarizabil-
ity than the ground state, an attractive Sisyphus-type
cooling mechanism for a red detuning with respect to the
free-space transition was predicted decades ago [24, 25],
and has indeed proven very efficient and applicable to a
wide range of trap depths and stiffnesses [19, 21, 26, 27];
Finally, when the excited state has a smaller polariz-

∗ RJ and FF have equally contributed to this work.

ability than the ground state, an alternative repulsive
Sisyphus-type mechanism with blue detuning can also be
exploited, under the condition that the atoms never reach
the position in space where the laser becomes resonant
with the shifted transition [16, 20, 23].

To compute the dynamic polarizability of a given state,
one usually sums the contributions of all known transi-
tions connecting to this state with the appropriate transi-
tion energies and dipole moments. These parameters can
either be measured, or obtained from ab-initio [16, 28, 29]
or semi-empirical models [30]. Because the precise deter-
mination of the transition dipole moments is a notori-
ously difficult task, and some discrepancies exist in the
literature, it is necessary to cross-check the validity of
the computation by looking for singular features such
as ‘tune-out’ (zero polarizability) or ‘magic’ (zero dif-
ferential polarizability) configurations at specific wave-
lengths [31], and compare the prediction to experimen-
tal measurements. For strontium, magic configurations
have been predicted and observed at 515.2 nm [15, 16]
and 914 nm [32] for the intercombination transition, and
at 813.4 nm for the S1 0– P3 0 clock transition [33–35], and,
most recently, a predicted tune-out configuration has also
been observed at 689.2 nm for the ground state [36].

Around 1064 nm, where powerful laser sources are
available for trapping atoms, a magic configuration has
been predicted for the intercombination transition of
strontium [37, pp. 65-66] [38, pp. 39-40], and was sup-
ported by early experimental observations [39, p. 179].
However, a direct observation was still lacking. In
this work, we have measured the scalar, vector, and
tensor components of the differential dynamic polariz-
ability of the strontium intercombination transition at
1064.7 nm. Our measurements are in excellent agree-
ment with the reference values which we computed using
the most recent spectroscopic data available in the liter-
ature [16, 30, 40, 41], which confirms the accuracy of the
spectroscopic data. We have also observed the expected
magic polarization for the states with a non-zero mag-
netic quantum number. Our results are summarized in
Table I at the end of the article.
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II. THEORETICAL BACKGROUND AND
PREDICTION FOR THE POLARIZABILITY

In this section, we quickly introduce the theoretical
framework, and present our prediction for the differential
dynamic polarizability of the intercombination transition
at 1064 nm. Our presentation closely follows that of [42].
In our context, the electronic eigenstates are uniquely
defined by the set of quantum numbers (γ, J,m), where
J and m correspond, respectively, to the total electronic
angular momentum and its projection along the quanti-
zation axis, and γ is a shorthand notation for the elec-
tronic configuration and spectroscopic term which we will
omit in the reminder of the article. We assume that the
quantization axis is provided by a bias magnetic field B.
In the dipole approximation, the interaction between the
atomic dipole d and a laser field with complex electric
field amplitude E , polarization u, and angular frequency
ω, is described by the operator

V̂ = −1

2
Eu · d̂ e−iωt + h. c. (1)

When the laser is far from resonance with the atom, the
atom-laser interaction can be treated using second order
perturbation theory within each {(J,m), |m| ≤ J} man-
ifold. Provided that the Zeeman splitting between the
magnetic sublevels is much larger than the coupling in-
duced by the atom-laser interaction, the electronic eigen-
states remain unchanged at the lowest order, and the
effect of the laser reduces to a shift of their energies pro-
portional to the squared electric field amplitude:

VJ,m(ω,u) = −αJ,m(ω,u)
|E|2

4
, (2)

This energy shift is called the (dynamic) Stark shift, and
the coefficient of proportionality α is called the (dynamic)
polarizability.

Following a common usage, we decompose the polar-
izability into scalar (αs

J), vector (αv
J) and tensor (αt

J)

polarizabilities:

αJ,m(ω,u) = αs
J(ω)− iαv

J(ω)
(u∗× u) · J

2J

+ αt
J(ω)

3(u∗ · J)(u · J)− J2

J(J − 1)
. (3)

The vector polarizability only contributes if the ellipticity
of the polarization is non-zero, because otherwise u is a
real vector and the cross product u∗ × u is zero. In order
to compute explicitly the scalar and vector products, we
introduce the Cartesian basis (ex, ey, ez), with the z-axis
pointing along the magnetic field: ez = B/∥B∥. One
then obtains the following, more practical expression:

αJ,m(ω,u) = αs
J(ω) + αv

J(ω)
m

2J
C(u)

− αt
J(ω)

3m2 − J(J + 1)

2J(2J − 1)
D(u) , (4)

with

C(u) = 2Im(u∗
xuy) , (5)

D(u) = 1− 3|uz|2 . (6)

The coefficient C quantifies the projection of the spin
angular momentum of the light onto the quantization
axis z: C = ±1 for σ± light, while C = 0 for π light.
The scalar, vector and tensor polarizabilities are related
to the irreducible components of the polarizability tensor
by the following equalities [42]:

αs
J =

1√
3(2J + 1)

α
(0)
J , (7)

αv
J = −

√
2J√

(J + 1)(2J + 1)
α
(1)
J , (8)

αt
J = −

√
2J(2J − 1)√

3(J + 1)(2J + 1)(2J + 3)
α
(2)
J . (9)

The irreducible components of the polarizability tensor
can be calculated using the expression

α
(K)
J (ω) = (−1)K+J+1

√
2K + 1

∑
J′

[
(−1)J

′
{
1 K 1
J J ′ J

} |⟨J ′∥d∥J⟩|2

ℏ
Re

(
1

ωJ′J − ω − iγJ′J/2
+

(−1)K

ωJ′J + ω + iγJ′J/2

)]
.

(10)

In this equation, ωJ′J = ωJ′ − ωJ is the difference be-
tween the energies of the states J ′ and J (divided by ℏ),
γJ′J = γJ′ + γJ is the sum of the inverse radiative life-
times of the states J ′ and J , and ⟨J ′∥d∥J⟩ is the reduced
dipole matrix element and of the transition J ↔ J ′. The
sum runs over all possible transitions from the state J to
higher or lower lying states J ′, and we have used the no-
tation { . . .

. . . } for Wigner’s 6-j symbol. The contribution

of the Zeeman shift to the state energies is completely
negligible for the large laser detuning ∆ = ω − ωJ′J we
are interested in. The reduced dipole matrix elements
can be calculated from the transition rates

AJ′J =
1

(2J ′ + 1)

ω3
J′J

3πε0c3ℏ
|⟨J ′∥d∥J⟩|2 (for ωJ′ > ωJ) ,

(11)
and the inverse radiative lifetimes are equal to the sum
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of the transition rates towards lower lying states:

γJ′ =
∑
J

AJ′J (for ωJ′ > ωJ) . (12)

In this work, we have measured the scalar, vector and
tensor components of the differential polarizability be-
tween the ground state 5s2 S1 0 (label ‘g’) and different
sublevels m of the excited state 5s5p P3 1 (label ‘e’) at
1064.7 nm:

∆αm(ω,u) = ∆αs(ω) + αv
e (ω)

m

2
C(u)

− αt
e(ω)

3m2 − 2

2
D(u) , (13)

with

∆αs = αs
e − αs

g . (14)

Throughout the article, we will give the values of polar-
izabilities in units of e2a40me/ℏ2 (atomic units, abbrevi-
ated a.u.), with e the electron charge, a0 the Bohr radius,
and me the electron mass. We have also computed ref-
erence values using Eqs. (7) to (13) and the most recent
spectroscopic data available in the literature, which are
listed in Tables II and III. For the sake of completeness,
we have included the ionic core polarizabilities (corrected
by the core-valence contributions), αcore

g = 5.3 a.u. and
αcore
e = 5.6 a.u. [16, 28], as frequency-independent contri-

butions to the scalar polarizabilities [43]. Our theoretical
prediction at 1064.7 nm is:

∆αs = −67 a.u. , αv
e = −172 a.u. , and αt

e = +17 a.u. .

According to these values, it should be possible to cancel
the differential polarizability between the ground state
and the excited sublevels m = ±1 for specific orientations
of the polarization vector u with respect to the quantiza-
tion axis. One such configuration corresponds to a laser
beam propagating in the same direction as the magnetic
field (+z), and a polarization such that

Cmagic = ±αt
e − 2∆αs

αv
e

= ∓0.88 for m = ±1 .

As already mentioned, the existence of a magic polariza-
tion was also predicted recently in [38, pp. 39-40] using
a slightly different approach: there, only the strongest
transitions were explicitly included in Eq. (10), and off-
sets were added to the scalar polarizabilities to take into
account all other transitions, with their values adjusted
to reproduce the magic configurations at 813 and 914 nm.
In spite of the convergence of these predictions, it is
extremely difficult to assess their accuracy because the
spectroscopic data they rely on have very different ori-
gins, and one can hardly aggregate their uncertainties
(which is why we decided not to provide an uncertainty
on the predicted values). A direct experimental measure-
ment of the differential polarizability therefore remains
essential.
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mirror

BEC

1064 nm
Stark beam

689 nm
probe beam

y

zx

waveplate

x (µm)
–250 2500

z 
(µ

m
)

–250

250

0

absorption image
after ToF

FIG. 1. A top view representation of the experimental setup.
The atomic sample was a Bose–Einstein condensate (BEC) of
Sr84 atoms. A laser beam with a wavelength of 1064.7 nm, a

1/e2-radius of 285 µm, and a power close to 20W induced a
Stark shift on the electronic levels. We call it the ‘Stark’
beam. We varied its polarization using a half-wave or a
quarter-wave plate. While the Stark beam was on, we excited
the intercombination transition at 689 nm using a ∼ 1 cm large
beam, which we call the ‘probe’ beam. The orientation of the
atomic dipoles is imposed by a 1.5G bias magnetic aligned
either along x or along y (not shown). After a 18ms long
time of flight (ToF), we recorded an absorption image of the
atomic distribution. When the probe beam was on resonance,
a fraction of the atoms was kicked away from the BEC, which
we could directly measure by integrating the signal in a region
of interest encompassing the BEC mode (dashed rectangle in
the camera image). We draw the reader’s attention on the
fact that the Cartesian coordinate system used to describe
the experiment is fixed by the geometry of the setup, not by
the orientation of the magnetic field. This is in contrast with
the convention used in Section II.

III. EXPERIMENTAL PROTOCOL

Before going into the details of our experimental pro-
tocol, we first briefly explain our strategy, which is also
schematically depicted in Fig. 1. We shined a pow-
erful 1064 nm laser beam onto a Bose–Einstein con-
densate (BEC) of Sr84 atoms to induce a Stark shift,
and probed the intercombination transition with another
689 nm laser beam. After a time of flight, we recorded
an absorption image and measured the fraction of atoms
which were expelled from the BEC mode by the probe
beam. By repeating the measurement for different fre-
quencies of the probe beam, we determined the position
of the shifted resonance. Then, we obtained the differen-
tial Stark shift by subtracting the position found in the
absence of Stark beam, and deduced the differential po-
larizability after dividing by the calibrated Stark beam
intensity. In order to separate the scalar, vector, and
tensor components of the polarizability, we repeated this
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procedure for different orientations of the atomic dipole
(imposed by an external magnetic field), and different
polarizations of the Stark beam.

Here, we describe each step more specifically. The BEC
contained 1·105 to 4·105 Sr84 atoms and was prepared in
one anti-node of a vertical (z-axis) optical lattice formed
by the intersection of two 1064 nm laser beams with a
relative angle of 12◦. The trap confinement frequencies
at the end of the evaporation were 1.8 kHz in the vertical
direction and 12Hz in both horizontal directions. The
optical density of this sample was so high that probing
the intercombination transition at this stage resulted in
strongly asymmetric line shapes, unsuitable for the pre-
cision measurements we were aiming for. In order to
reduce the optical density, we proceeded in two steps.
Firstly, we suddenly increased the intensity of the trap-
ping laser beams by a factor 4 and held the gas for a
quarter of the new vertical oscillation period in order to
convert the initial potential energy into kinetic energy in
the vertical direction. The horizontal dynamics was neg-
ligible during this compression step. Then, we switched
off the optical trap and let the gas expand freely during
1ms, after which the vertical dimension had increased to
12 µm, while the horizontal dimensions remained approx-
imately constant at 50 µm, both being defined as the full
width at half maximum (FWHM). The peak atomic den-
sity was then of the order 5 ·1012 cm−3, corresponding to
an optical density of the order of 30 on resonance.

At this stage, we shined the Stark beam and simulta-
neously excited the S1 0– P3 1 intercombination transition
with the probe beam for a duration of 800 µs. The Stark
beam was aligned on the position of the atoms after the
first 1ms expansion, and propagated in the horizontal
plane along the x-axis, see Fig. 1. The beam had a 1/e2-
radius of 285 µm and a power close to 20W. With such
parameters, the confining effect of the Stark beam was
too weak to hold the atoms against gravity, and the atoms
kept falling while they were being probed. However, the
displacement of the sample during the 800 µs probe du-
ration was about 10 µm, which is negligible. We have
carefully calibrated the Stark beam intensity at the posi-
tion of the atoms to be I = ε0c|E|2/2 = 147± 5W/mm2

(ε0 is the vacuum dielectric permittivity and c the speed
of light). The uncertainty should be understood as peak-
to-peak, and it aggregates the uncertainties on the rela-
tive position between the atoms and the beam center, on
the beam profile, and on the beam power. More details
are given in appendix B. The polarization of the Stark
beam, initially linear, was tuned either with a quarter-
wave plate or with a half-wave plate, depending on the
polarizability component which we wanted to determine.
We have verified experimentally that the birefringence
of the optical elements located in-between the waveplate
and the atoms had a negligible effect on the polarization
of the Stark beam (below 1%).

The probe beam was parallel to the Stark beam, and it
had a diameter of the order of 1 cm, much larger than the
size of the atomic distribution, see Fig. 1. Its intensity

was set approximately equal to the saturation intensity
of the intercombination transition (3 µW/cm2).

We used three pairs of coils surrounding the vacuum
chamber to compensate for the earth magnetic field and
apply a bias field of B = 1.5G throughout the prob-
ing phase. The Zeeman splitting gJµBB/h ≃ 3MHz
is more than 20 times larger than the Stark shift (gJ
is the Landé factor, µB the Bohr magneton, and h the
Planck constant), consequently, the orientation of the
atomic dipoles was effectively imposed by the orienta-
tion of the magnetic field, and we could easily resolve
the transitions to the different P3 1,m states. The mag-
netic field was oriented along x (i.e., parallel to the Stark
beam) when using the quarter-wave plate, and along y
(i.e., perpendicular to the Stark beam) when using the
half-wave plate. The exact procedure used for aligning
the magnetic field is described in appendix C.

After the probing phase, we let the gas freely fall and
expand for another 18ms in order to spatially separate
the atoms which have absorbed a photon from the probe
beam from those which have not. Then, we recorded
an absorption image using the broad S1 0– P1 1 transition
at 461 nm, with the line of sight along the y axis, see
Fig. 1. To locate the atomic resonance, we measured
the fraction of atoms remaining in a region of interest
centered on the BEC mode as we scanned the probe beam
frequency, see Fig. 1 and the inset in Fig. 2. Due to
the high optical density, the intercombination line was
broadened to around 60 kHz FWHM. By repeating the
same experiment in the absence of the Stark beam and
subtracting the position of the free-space resonance from
that of the shifted resonance, we directly obtained the
differential Stark shift,

∆Vm(u) = Ve,m(u)− Vg(u) = −∆αm(u)
I

2ε0c
. (15)

IV. RESULTS

We have performed two complementary sets of mea-
surements. In the first set, we probed the transition to
P3 1,m = 0 with a linear Stark beam polarization, and

fixed the orientation of the atomic dipole along y, i.e.,
perpendicular to the Stark beam propagation axis, using
the external magnetic field. The direction of the Stark
beam polarization was then varied by rotating a half-
wave plate. In this configuration, the excited state has
no vector polarizability, and its tensor polarizability os-
cillates sinusoidally with the angle of the waveplate, such
that the differential polarizability reduces to

∆αm=0(θhwp) = ∆αs− 1

2
αt

e−
3

2
cos [4(θhwp − θ0,hwp)] α

t
e ,

(16)
where θhwp is the angle between one optic axis of the
waveplate and a reference orientation, and θ0,hwp is the
angle between the reference orientation and the initial
linear polarization of the Stark beam. The differential
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FIG. 2. Differential Stark shift of the S1 0– P3 1,m = 0 transi-
tion as we rotate the direction of the linear Stark beam polar-
ization. The direction of the atomic dipole (y) is fixed by the
external magnetic field B and is perpendicular to the Stark
beam propagation axis (x). The direction of the linear Stark
beam polarization u is rotated using a half-wave plate, whose
orientation is measured by the angle θhwp. The dots with error
bars represent the measured differential Stark shifts. The blue
line on the Poincaré sphere represents the trajectory of the
Stark beam polarization as we vary θhwp. For each orientation
of the waveplate, we measure the relative atom number in the
BEC mode as we scan the probe beam frequency relative to
the expected free-space resonance, both in the presence and
in the absence of the Stark beam (triangles and dots in the
inset, respectively). Then, we fit the spectra with an inverted
Gaussian model to determine the resonances positions (gray
lines in the inset), and take the difference of the two values
to obtain the differential Stark shift. The uncertainties on
the measured differential Stark shift (vertical error bars on
the main graph) reflect the fit uncertainties on the resonance
positions. The uncertainty on the orientation of the half-wave
plate is estimated to be ±0.5◦ and is not visible on the scale
of the graph. The sinusoidal gray line in the main graph is
the result of a fit of the measured differential Stark shift by a
sinusoidal model using orthogonal distance regression.

Stark shifts measured for different orientations of the
half-wave plate are displayed as dots with error bars in
Fig. 2, and match very well with the expected sinusoidal
profile. The trajectory followed the Stark beam polar-
ization as we rotated the waveplate is represented by the
blue line is located along the equator of the Poincaré
sphere, corresponding to the linear polarizations in the
transverse plane yz [44]. The graph in inset shows the
raw spectra from which we extract the differential Stark
shift for θhwp = 82◦: the triangles correspond to the
shifted resonance, the dots to the free-space resonance,
and the gray lines are the fitted inverted Gaussian pro-
files which we used to determine the resonance positions.
The vertical error bars in Fig. 2 is the root sum of squares
of the standard deviations on the fitted resonance posi-
tions. We have estimated the uncertainty on the angle

u

x
B

FIG. 3. Differential Stark shift of the S1 0– P3 1,m = −1 tran-
sition as we vary the ellipticity of the Stark beam polarization.
The direction of the atomic dipole (x) is fixed by the external
magnetic field B and is parallel to the Stark beam propaga-
tion axis. The ellipticity of the Stark beam polarization u is
controlled by the orientation of a quarter-wave plate (angle
θqwp). The dots, the error bars and the line in the main graph
have the same meaning as in Fig. 2. The uncertainty on the
orientation of the half-wave plate is estimated to be ±1◦. The
differential Stark shift is found to be zero for a magic elliptic-
ity Cmagic = +0.847± 0.023 (red dots), corresponding to the
latitude +57.9◦ on the Poincaré sphere (red circle).

θhwp to ±0.5◦, which is too small to be visible on the scale
of the graph. Using orthogonal distance regression (gray
line in the main graph), we find the amplitude and base-
line of the oscillation to be, respectively, 20.9 ± 0.3 kHz
and 53.3±0.2 kHz, where the uncertainties correspond to
one standard deviation. Dividing by the independently
calibrated Stark beam intensity, we obtain

αt
e = +20.2± 0.9 a.u. ,

∆αs − 1

2
αt

e = −77.4± 2.7 a.u. .

The uncertainties on these values combine the statistical
uncertainty on the corresponding regression parameter,
and the systematic uncertainty on the Stark beam inten-
sity. We give the two uncertainties separately in Table I.

In the second set of measurements, we probed the tran-
sition to P3 1,m = −1 with an elliptical Stark beam po-
larization, and fixed the orientation of the atomic dipole
along x, i.e., parallel to the Stark beam propagation axis,
using the external magnetic field. We varied the elliptic-
ity of the Stark beam polarization by rotating a quarter-
wave plate. In this configuration, the tensor polarizabil-
ity of the excited state is constant, and the vector polariz-
ability oscillates with the angle of the waveplate, leading
to

∆αm=−1(θqwp) = ∆αs− 1

2
αt

e+
1

2
sin[2(θqwp−θ0,qwp)]α

v
e .

(17)
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measured std. dev. predicted unit

stat. syst.

αv
e −180 3 6 −172

a.u.αt
e +20.2 0.6 0.7 +17

∆αs − 1
2
αt

e
−77.4 0.7 2.6 −76−76.2 1.3 2.6

|Cmagic| 0.847 0.023 0.88

TABLE I. Summary of our measurements of the components
of the differential polarizability of strontium at 1064.7 nm.
The polarizability values are given in units of e2a4

0me/ℏ2
(atomic units). The standard deviations for these values are
decomposed into a statistical uncertainty linked to the dif-
ferential Stark shift measurements, and a systematic uncer-
tainty associated with the calibration of the Stark beam inten-
sity. The predicted polarizability values were obtained using
Eqs. (7) to (10) and the spectroscopic data from Tables II
and III.

Our measurements of the differential Stark shift for differ-
ent orientations of the quarter-wave plate are again in ex-
cellent agreement with this model, see Fig. 3. Note that
the uncertainty on the waveplate angle was ±1◦ in this
configuration. The trajectory of the Stark beam polariza-
tion on the Poincaré sphere goes from linear (equatorial
plane) when one of the principal axes of the waveplate
is aligned with the initial polarization, to right-handed
circular (equivalently σ+, north pole) or left-handed cir-
cular (equivalently σ−, south pole), when the optic axes
are at 45◦ from the initial polarization. The fitted val-
ues of the amplitude and baseline of the oscillation are,
respectively, 61.9± 0.9 kHz and 52.5± 0.8 kHz. Dividing
by the Stark beam intensity yields

αv
e = −180± 7 a.u. ,

∆αs − 1

2
αt

e = −76.2± 2.9 a.u. .

Note that the static component ∆αs − 1
2α

t
e measured in

the first and second configurations match to within 2%,
although the two sets of measurements have been per-
formed at a one-week interval, and the Stark beam align-
ment was performed independently for each set.

Remarkably, the oscillation of the differential Stark
shift intercepts zero for two positions of the quarter-wave
plate (horizontal dashed line, red dots), corresponding to
a ‘magic’ polarization characterized by

Cmagic =
αt

e − 2∆αs

αv
e

= +0.847± 0.023 ,

and to the latitude +57.9◦ (red circle) on the Poincaré
sphere. We stress that the measurement of Cmagic is free
of the systematic uncertainty related to the Stark beam
intensity.

V. CONCLUSION

We have measured the scalar, vector and tensor com-
ponents of the differential dynamic polarizability of the
S1 0– P3 1 intercombination transition of strontium at a

wavelength of 1064.7 nm. We have also identified a magic
ellipticity ±0.85 ± 0.02 of the polarization at which the
differential polarizability on the m = ±1 states vanishes.
The existence of this magic configuration has important
implications for laser cooling optically trapped atoms be-
cause it gives access to the three main types of cooling
mechanisms (sideband cooling, attractive and repulsive
Sisyphus cooling), at a wavelength were powerful laser
sources exist. In particular, tuning to the sideband or
the attractive Sisyphus cooling limits would relax the
constraint on the trap depth which is imposed by the
repulsive Sisyphus cooling. The laser power could then
be used instead to increase the number of optical traps,
or their volume. Our observations also provide a new
benchmark for atomic models of strontium, which should
also be beneficial to precision experiments.

ACKNOWLEDGMENTS

The authors express their gratitude to Anaïs Molineri,
Clémence Briosne-Fréjaville, Sayali Shevate and Florence
Nogrette for their contribution to the design and con-
struction of the experimental apparatus, and to Isabelle
Bouchoule for steady and fruitful discussions. The au-
thors also thank Maxence Lepers and Mona Ghazal for
their critical reading of the manuscript. This work has
been supported by Region Île-de-France in the framework
of DIM QuanTiP. This project has received funding from
the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No 679408).

Appendix A: Spectroscopic data for the
computation of the polarizabilities

The lists of all transitions included in our computation
of the polarizability of the states 5s2 S1 0 and 5s5p P3 1 are
given in Tables II and III.

Appendix B: Calibration of the Stark beam intensity

We took a great care in calibrating the value of the
Stark beam intensity at the position of the atoms, be-
cause it is a major source of (systematic) uncertainty in
our measurement of differential polarizability. The first
step was to measure the total power P in the Stark beam
using a power-meter. To do so, we have calibrated with
three different power meters the linear relationship be-
tween the absolute power and the voltage at the output
of a photodiode which was monitoring a fraction of the
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J ′ wavelength |⟨J ′∥d∥J⟩| source
(nm) (ea0)

5s5p P3 1 689.46 0.151 [16, 40]
5s5p P1 1 460.87 5.248 [16]
5s6p P1 1 293.27 0.266 [40]
5s6p P3 1 295.26 0.108 [30]
4d5p P3 1 268.08 0.043 [30]
5s7p P1 1 257.02 0.361 [40]
5s7p P3 1 253.64 0.053 [30]
4d5p P1 1 242.88 0.600 [40]
5s8p P3 1 239.69 0.033 [30]
5s8p P1 1 235.50 0.592 [40]
5s9p P3 1 232.61 0.017 [30]
5s9p P1 1 230.80 0.457 [40]
5s10p P3 1 228.51 0.012 [30]
5s10p P1 1 227.59 0.346 [40]
5s11p P3 1 225.91 0.009 [30]
5s11p P1 1 225.40 0.251 [40]
5s12p P1 1 223.83 0.200 [40]
5s13p P1 1 222.70 0.160 [40]
5s14p P1 1 221.85 0.137 [40]
5s15p P1 1 221.20 0.118 [40]
5s16p P1 1 220.69 0.100 [40]
5s17p P1 1 220.29 0.089 [40]
5s18p P1 1 219.96 0.081 [40]
5s19p P1 1 219.69 0.071 [40]
5s20p P1 1 219.47 0.063 [40]

TABLE II. Spectroscopic data used to compute the polariz-
ability of the state J ≡ 5s2 S1 0.

Stark beam leaking from the rear side of a mirror. Then,
we extrapolated the power used in the experiments using
the average of these calibrations to obtain the estimate
P = 19.8W, with an uncertainty of ±1.5% (one standard
deviation).

To compute the peak intensity of the beam, we
recorded an image of the beam profile at the position of
its waist, and we divided the count number of the bright-
est pixel by both the total count number and the surface
of a pixel. This procedure was necessary because the
beam profile showed some deviations from a purely Gaus-
sian mode, most noticeably in the tails. In order to min-
imize the systematic errors, we reduced the background
counts to a negligible amount, verified the linearity of the
sensor at the level of the peak intensity, and measured
the pixel size using a calibrated microscope. We found
a peak intensity of 150W/mm2 for P = 19.8W. Taking
into account the uncertainty on the exact position of the
atoms along the beam, the uncertainty on the pixel size,
the dependence of the total count number on the choice
of the integration area, and the uncertainty on the laser
power, we estimate the uncertainty on the peak inten-
sity to be ±2.5%. This number should be considered a
conservative estimate as we could not make a statistical
analysis for all sources of uncertainty.

Finally, we have also considered the effect of the rela-
tive position between the atoms and the point where the

J ′ wavelength |⟨J ′∥d∥J⟩| source
(nm) (ea0)

5s4d D3 1 2735.98 2.322 [16]
5s4d D3 2 2692.51 4.019 [16]
5s4d D1 2 1771.48 0.190 [16]
5s2 S1 0 689.46 0.151 [16, 40]
5s6s S3 1 688.04 3.425 [16]
5s6s S1 0 621.62 0.045 [16]
5s5d D1 2 494.49 0.061 [16]
5s5d D3 1 487.73 2.009 [16]
5s5d D3 2 487.38 3.673 [16]
5p2 P3 0 483.35 2.657 [16]
5p2 P3 1 478.56 2.362 [16]
5p2 P3 2 472.37 2.865 [16]
5p2 D1 2 445.30 0.228 [16]
5p2 S1 0 441.38 0.291 [16]
5s7s S3 1 436.30 0.921 [16]
5s7s S1 0 417.71 0.250 [30]
5s6d D3 1 397.12 0.986 [41]
5s6d D3 2 397.04 1.708 [41]
5s8s S3 1 380.85 0.479 [41]
5s7d D3 1 365.50 0.661 [41]
5s7d D3 2 365.43 1.145 [41]
5s9s S3 1 357.82 0.324 [41]
5s8d D3 1 350.11 0.480 [41]
5s8d D3 2 350.07 0.831 [41]
5s10s S3 1 345.74 0.240 [41]
5s9d D3 2 341.26 0.643 [41]
5s9d D3 1 341.26 0.371 [41]
4d2 P3 0 333.09 1.680 [30]
4d2 P3 1 332.31 1.720 [30]
4d2 P3 2 330.84 2.210 [30]

TABLE III. Spectroscopic data used to compute the polariz-
ability of the state J ≡ 5s5p P3 1.

Stark beam reaches its peak intensity. Here, we took two
effects into account: the finite size of the atomic sample
and the accuracy of the beam alignment. After the 1ms
free expansion, the atomic sample reaches a full width
at half maximum of 50 µm in the x and y directions, and
12 µm in the z direction, while the Stark beam has a 1/e2

radius of 285 µm in the yz plane. Modelling the atomic
distribution by an axisymmetric Thomas–Fermi profile
in the xy plane, and by a Gaussian along z, we conclude
that the average Stark beam intensity seen by the atoms
is 1% lower than the peak intensity.

Our procedure to align the Stark beam onto the cen-
ter of the atomic sample was to maximize the differential
Stark shift for the state with m = −1 and a σ+ polar-
ization, that is, when the differential Stark shift was the
largest. We estimate that we could superimpose the cen-
ter of the beam with the center of the sample to ±30 µm,
taking into account the 10 µm displacement of the atoms
during the probe phase. We therefore conclude that the
average Stark beam intensity at the position of the atoms
was between 0.95 and 0.99 times the peak intensity. This
range should again be considered a conservative estimate.
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Putting together the estimate of the power of the
Stark beam, of the peak intensity, and of the relative
position between the atoms and the beam, we arrive
at the following estimate for the Stark beam intensity:
I = 147± 5W/mm2, where the uncertainty was rounded
to the next upper integer.

Appendix C: Relative orientation of the magnetic
field and Stark beam propagation axis

In our experiment, the orientation of the bias mag-
netic field (along x or y) defines the quantization axis
and serves as a reference to decompose the polarization
vector. It is therefore essential to precisely assess the rel-
ative orientation between the bias magnetic field and the
Stark beam propagation axis. For example, when mea-
suring the differential Stark shift of the S1 0– P3 1,m = −1
as a function of the ellipticity of the Stark beam polar-
ization (second configuration, Eq. (17) and Fig. 3), we
assumed that the Stark beam was exactly parallel to the
bias magnetic field. If there was instead an angle β be-
tween the Stark beam and the bias magnetic field, the
amplitude of the oscillation would be reduced by a factor
cos2(β) with respect to the case β = 0, which would lead

to an underestimation of the vector component αv
e .

The bias magnetic field was generated by three pairs of
coils wound around the viewports of the vacuum cham-
ber, with their axes defining the x, y and z axes. The
exact angle between the Stark beam and the coil axes has
not been measured. However, because the Stark beam
was centered on the viewports of the x axis, the angle
between the Stark beam propagation axis and the mag-
netic field produced by the pair of coils on the x axis
must be within ±1.5◦ (conservative estimation).

The ambient magnetic field was compensated by scan-
ning the probe beam frequency around the free-space fre-
quency of the intercombination transition and tuning the
currents in the coils until the lines corresponding to the
three magnetic sublevels of the excited state merged. The
resulting line had a FWHM of 50 kHz, corresponding to
a residual ambient magnetic lower than 0.025G. Conse-
quently, the orientation sum of 1.5G bias magnetic field
and this residual ambient magnetic field should be within
±1◦ of the coil’s axis for all configurations.

In the end, the discrepancy between the relative orien-
tation of the bias magnetic field and Stark beam propa-
gation axis is therefore lower than 3◦, and the resulting
uncertainty on the different components of the differen-
tial polarizability is negligible in front of the other sources
of uncertainty (cos(3◦) = 0.997).
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