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In a previous article [1] we presented an argument to obtain (or rather infer) Born’s rule, based on
a simple set of axioms named “Contexts, Systems and Modalities” (CSM). In this approach there is
no “emergence”, but the structure of quantum mechanics can be attributed to an interplay between
the quantized number of modalities that are accessible to a quantum system, and the continuum
of contexts that are required to define these modalities. The strong link of this derivation with
Gleason’s theorem was emphasized, with the argument that CSM provides a physical justification
for Gleason’s hypotheses. Here we extend this result by showing that an essential one among these
hypotheses - the need of unitary transforms to relate different contexts - can be removed and is
better seen as a necessary consequence of Uhlhorn’s theorem.

I. INTRODUCTION.

Many recent articles have proposed derivations of
Born’s rule [1–5], that is a major theoretical basis of
quantum mechanics (QM). Let us note in particular the
construction based on Quantum Darwinism, that has
been proposed by Wojciech Zurek [6–8]. It will be dis-
cussed further in the conclusion, but here we take a dif-
ferent position, that is [1] : we start from some sim-
ple physical requirements or postulates, based on estab-
lished (quantum) empirical evidence [9–15]; then we infer
a mathematical structure able to describe these physical
requirements, and finally we get deductively Born’s rule
and more generally the probabilistic structure of QM.
With respect to [1] the main purpose of the present ar-
ticle is to simplify further the required mathematical hy-
potheses, by showing that an essential one - the need of
unitary transforms to relate different contexts - can be
removed and is better seen as a necessary consequence of
Uhlhorn’s theorem, to be introduced below.

II. THE CSM FRAMEWORK.

The approach of “Contexts, Systems and Modalities”
(CSM) is a point of view on Quantum Mechanics based
on a non-classical ontology, where physical properties
are attributed to physical objects consisting of a system
within a context, that is an idealized measurement appa-
ratus. Such physical properties are called modalities, and
a modality belongs to a specified system within a speci-
fied context, which is described classically (see Annex for
more precise definitions). Loosely speaking, the mathe-
matical description of a modality includes both a usual
state vector |ψ〉, and a complete set of commuting op-
erators admitting this vector as an eigenstate. Though
it may appear heavier at first sight, this point of view
eliminates a lot of troubles about QM, and can be seen
(in some sense !) as a reconciliation between Bohr and
Einstein in their famous 1935 debate [16].

The main feature which makes modalities non-classical
is that they are both quantized and contextual, as written
above. More precisely, the empirical facts that we want
to describe mathematically are :

(i) in each context a measurement provides one modality
among N possible ones, that are mutually exclusive. No
measurement can provide more than N mutually exclu-
sive modalities, and once obtained in a given context, a
modality corresponds to a certain and repeatable result,
as long as one remains in this same context.

(ii) the certainty and repeatability of a modality can be
transferred between contexts, this fundamental property
is called extracontextuality of modalities. All the modal-
ities that are related together with certainty, either in the
same or in different contexts, constitute an equivalence
class that we call an extravalence class.

(iii) The different contexts relevant for a given quantum
system are related between themselves by transforma-
tions g that have the structure of a continuous group G.

This last statement tells that all the different contexts
relevant for a given quantum system are related between
themselves by continuous transformations g which are
associative, have a neutral element (no change), and an
inverse. Therefore this set has the structure of a continu-
ous group G, which is generally not commutative (such as
the rotations of a macroscopic device). Our goal is then
to identify a (non-classical) probabilistic framework [1]
corresponding to these requirements, and to draw conse-
quences by using suitable standard theorems.

For this purpose, the central mathematical ingredient
is to associate a rank-one projector Pi (a N×N hermitian
matrix such as P 2 = P = P † ) to each modality, with
the rule that modalities associated with orthogonal pro-
jectors are mutually exclusive, and modalities associated
with the same projector are mutually certain. Corre-
spondingly, a context is associated with a set of rank-one
mutually orthogonal projectors, whereas an extravalence
class of modalities is associated with a single projector.
In addition, we assume that, given a modality in a con-
text, the probability to get another modality in another
context is a function of the two projectors associated with
these two modalities (or equivalently with their two ex-
travalence class).
The heuristic motivation for using a complete set of

mutually orthogonal projectors to build up a context is
that this ensures that the events associated with modal-
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ities cannot be subdivided in more elementary events, as
this would be the case with classical (partition-based)
probabilities. On the other hand, the construction war-
rants that certainty can be transferred between contexts
for extravalent modalities.
Now, we want to show that the usual structure of QM

follows from the above hypotheses : this means that uni-
tary transforms between projectors as well as Born’s rule
are necessary in the above framework. Let us emphasize
that it is easy to show these results fulfill our hypotheses;
but showing that they are necessary requires powerful
(and difficult to demonstrate) mathematical theorems.
Necessity also means that if one wants to give up uni-
tary transforms or Born’s rule, one has to give up one
of the statements above, without contradicting empirical
evidence; this is an interesting challenge [17].

III. NECESSITY OF UNITARY TRANSFORMS.

As said above, the basic mathematical tool we use is
to associate N mutually orthogonal projectors with the
N mutually exclusive modalities within a given context.
The choice of such a specific orthogonal set of projectors
associated with a context is not given a priori, but once it
is done, the sets of projectors in all other contexts should
be obtained by a bijective map Γ reflecting the structure
of the continuous group G of context changes.
For consistency, if two orthogonal projectors are as-

sociated with two mutually exclusive modalities, they
should stay orthogonal under the map Γ, whatever choice
is made for the projectors associated with a “reference”
(fiduciary) context. Then let us consider

Uhlhorn’s theorem [20, 21] : Let H be a complex
Hilbert space with dim(H) ≥ 3, and let P1(H) denote
the set of all rank-one projections on H. Then every
bijective map Γ : P1(H) → P1(H), such that pq = 0 in
P1(H) if and only if Γ(p)Γ(q) = 0, is induced by a unitary
or anti-unitary operator on the underlying Hilbert space.

This theorem implies that if orthogonality is conserved
as required above, then the transformations between the
sets of projectors associated with different contexts is
unitary or anti-unitary [22]. In the case of a continuous
group of transformations, which is the case here, then the
transformation must be unitary (and not anti-unitary) as
long as it is continuously connected to the identity, which
is the situation we are interested in (see also below).

The strength and importance of Uhlhorn’s theorem is
that it requires that the map keeps the orthogonality of
rank-one projections, or equivalently of non-normalized
vectors (or rays). A transformation mapping an or-
thonormal basis onto an orthonormal basis is clearly a
unitary transform; but this result is far from obvious if
the conservation of the norm is not required. A related
(but weaker) result is Wigner’s theorem, getting the same
conclusion as Uhlhorn’s if the modulus of the scalar prod-
uct of any two vectors is conserved by the transformation.
Uhlhorn’s theorem is much more powerful, since it only

assumes that the scalar product is conserved when it is
zero, i.e. when the two rays are orthogonal [23].

We thus get a major result : once a set of mutually
orthogonal projectors associated with a fiduciary context
has been chosen, the sets of projectors associated to all
other contexts are obtained by unitary transformations,
so we are unitarily “moving” in a Hilbert space. There
are also various arguments for using unitary (complex)
rather than orthogonal (real) matrices; in our framework
the simplest argument is to require that all permutations
of modalities within a context are continuously connected
to the identity. This is not possible with (real) orthogonal
matrices, which split into two subsets with determinants
±1, but is possible with unitary ones, see [12, 14].

IV. NECESSITY OF BORN’S RULE

The next step is to consider the probability f(Pi) to get
a modality associated with projector Pi. By construction

a context is such that
∑i=N

i=1 Pi = I, and
∑i=N

i=1 f(Pi) = 1
for any complete set {Pi}. But these are just the hypoth-
esis of Gleason’s theorem, so there is a density matrix ρ
such that f(Pi) = Trace(ρPi). More precisely :

Gleason’s Theorem [24, 25] : Let f be a function
to the real unit interval from the projection operators on
a separable (real or complex) Hilbert space with dimen-
sion at least 3. If one has

∑
i f(Pi) = 1 for any set {Pi}

of mutually orthogonal rank-one projectors summing to
the identity, then there exists a positive-semidefinite self-
adjoint operator ρ with unit trace (called a density oper-
ator) such that f(Pi) = Trace(ρPi).

If the value 1 is reached, then ρ is also a projector
Qj and f(Pi) = Trace(QjPi) which is the usual Born’s
formula. As already explained in [1], we have considered
initial and final modalities, i.e. rank 1 projectors [14], but
more generally Gleason’s theorem provides the probabil-
ity law for density operators (convex sums of projectors),
interpreted as statistical mixtures. This clarifies the link
between Born’s rule and the mathematical structure of
density operators [26]. One gets thus the basic proba-
bilistic framework of QM; this is enough for our purpose
here, but more is needed for a full reconstruction; in par-
ticular, composite systems and tensor products should be
included [19].

In addition, one must define explicitly the relevant
physical properties and associated contexts, that may
go from space-time symmetries (Galileo group, Lorentz
group) to qubits registers. Then the unitary transforms
appear as representations of the relevant group of sym-
metry [27]. In any case, contextual quantization applies
and sets the scene where the actual physics takes place.

V. DISCUSSION.

For the sake of completeness, it is useful to remind
here some statements already presented in [1]. A key
feature of the contextual quantification postulate is the



3

fixed value N of the maximum number of mutually ex-
clusive modalities, that turns out to be the dimension
of Hilbert space. This provides another heuristic rea-
son for using projectors: the projective structure of the
probability law guarantees that the maximum number of
mutually exclusive modalities cannot be circumvented.

This would not be the case in the usual partition-
based probability theory: partitioning all modalities into
N subsets for any given context would not prevent sub-
partitions, corresponding to additional details or hidden
variables forbidden by our basic postulate. This is math-
ematically equivalent to the Bell’s or Kochen-Specker’s
(KS) theorems and all their variants, which essentially
demonstrate the inadequacy of probabilities based on
partitions. This problem disappears when projectors are
used, and then, starting from Gleason’s theorem, there
is no choice but Born’s rule.

It should also be noted that Bell’s or KS theorems con-
sider discrete sets of contexts, while Gleason’s theorem is
based on the interaction between the continuum of con-
texts and the quantified number of accessible modalities,
in a given context. This feature is also fully consistent
with the ideas of CSM. Therefore, Gleason’s assumptions
in our approach have a deep physical content that com-
bines contextual quantification and extracontextuality of
modalities. Since these features are required by empir-
ical evidence, the usual QM formalism provides a good
answer to a well-posed question.

We note however that our approach leads to some dif-
ferences with the standard (textbook) one: in particular,
the usual quantum state vector |ψ〉 is not predictively
complete, since it provides a well-defined probability dis-
tribution only when “completed” by the specification of
a context [18]. A complete description including also the
contexts requires the use of algebraic methods [19].

To conclude, let us come back to some epistemological
difference between the approach used here and the one
favored by Wojciech Zurek [6–8]. In his point of view,
the role of mathematics is prescriptive : first “Let be Ψ”,
and then all the rest should follow. On the contrary, in
our approach its role is descriptive : there is a physi-
cal world out there, and the mathematical langage is our
best tool to “speak” about it – but it is a langage, not
the Tables of the Law. Also, in CSM there is no “Emer-
gence of the Classical” [8]: the classical and quantum de-
scription are both needed to make sense of our physical
universe, where an object is a system within a context.
These subtle differences may appear more philosophical
than practical, and they do not preclude an agreement
on more down-to-the-earth issues, e.g. the management
of decoherence for applications to quantum technologies.
However, keeping such issues open is certainly a compost
for new ideas to germinate.
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Annex : CSM definitions and postulates.

For the convenience of the reader, this Appendix sum-
marizes the basic elements of CSM, see e.g. [1].

Postulate 1a (ontology) : Let us consider a quan-
tum system S interacting with a specified set of mea-
surement devices, that is called a context. The best
physically allowed measurement process provides a set of
numbers, corresponding to the values of a well-defined
and complete set of jointly measurable quantities. Ideally
these values will be found again with certainty, as long as
the system and context are kept the same; they define a
modality, belonging to a system within a context [28].

Here the word “context” includes the actual settings
of the device, e.g. the fact that Sz is measured rather
than Sx: the context must be factual, not contrafactual.
On the other hand all devices designed to measure Sz are
equivalent as a context, in a (Bohrian) sense that they
all define the same conditions for predicting the future
behaviour of the system. Note that the modalities are
not defined in the same way as the usual “quantum states
of the system”, since they are explicitly attached to both
the context and the system. This leads to the addition :

Postulate 1b (extravalence) : When S interacts in
succession with different contexts, certainty and repeata-
bility may be transferred between their modalities. This is
called extracontextuality, and defines an equivalence
class between modalities, called extravalence.

The equivalence relation is obvious, for more details and
examples of extravalence classes see [14]. Note that ex-
travalent modalities appear only if N ≥ 3, this has an
obvious geometrical interpretation in relation with both
Gleason’s and Uhlhorn’s theorems.
From the above postulates, one measurement provides

one and only one modality. Therefore in any given con-
text the various possible modalities are mutually exclu-
sive, meaning that if one is true, or verified, all other ones
are not true, or not verified. This is formalized by

Postulate 2 (contextual quantization) : For a given
context, i.e. a given “knob settings” of the measurement
apparatus, there exist N modalities that are mutually ex-
clusive. The value of N , called the dimension, is a char-
acteristic property of a given quantum system, and is the
same in any relevant context.
Modalities observed in different contexts are generally

not mutually exclusive, they are said to be incompatible,
meaning that if a result is true, or verified, one cannot
tell whether the other one is true or not. Finally, a last
statement defines the relation between contexts :

Postulate 3 (changing contexts) : The different con-
texts relevant for a given quantum system are related
between themselves by (classical) transformations g that
have the structure of a continuous group G.

The intuitive idea behind these statements is that mak-
ing more measurements in QM (by changing the context)
cannot provide “more details” about the system, because



4

this would increase the number of mutually exclusive
modalities, contradicting Postulate 2. One might con-
clude that changing context randomizes all results, but
this is not true either : some modalities may be related
with certainty between different contexts. This is why
extravalence is an essential feature of the construction,

both as a physical requirement, and as a justification for
Gleason’s hypotheses. Adding that context changes must
preserve the mutual exclusiveness of modalities, i.e. must
preserve the orthogonality of projectors, that is Uhlhorn’s
hypotheses, makes Born’s rule a necessity.
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[4] Franck Laloë, “Do We Really Understand Quantum Me-
chanics?”, Cambridge University Press (2012).

[5] For an interesting non-derivation of Born’s rule and a dis-
cussion, see Lubos Motl, “What Born’s rule can’t be de-
rived from”, https://motls.blogspot.com/2014/07/what-
borns-rule-cant-be-derived-from.html

[6] W. H. Zurek, “Quantum darwinism, classical reality, and
the randomness of quantum jumps”, Physics Today 67,
44-50 (October 2014).
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tion: Une Introduction à ...”, M. Leduc and M. Le Bellac
eds, EDP Sciences (2021).

[28] The free evolution of the system is omitted here; if it
is present, the result of a new measurement can still be
predicted with certainty, but in another context that can
be deduced from the free evolution.

http://arxiv.org/abs/1910.13738
http://arxiv.org/abs/quant-ph/0111130
http://arxiv.org/abs/2107.03378
http://arxiv.org/abs/1409.2120
http://arxiv.org/abs/1601.03966
http://arxiv.org/abs/1804.04807
http://arxiv.org/abs/1801.01398
http://arxiv.org/abs/1907.11267
http://arxiv.org/abs/2012.09736
http://arxiv.org/abs/2003.03121
http://arxiv.org/abs/2106.06182

