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Abstract

We experimentally investigate the effects of parametric instabilities on the short-time heating 

process of periodically-driven bosons in 2D optical lattices with a continuous transverse (tube) 

degree of freedom. We analyze three types of periodic drives: (i) linear along the x-lattice direction 

only, (ii) linear along the lattice diagonal, and (iii) circular in the lattice plane. In all cases, we 

demonstrate that the BEC decay is dominated by the emergence of unstable Bogoliubov modes, 

rather than scattering in higher Floquet bands, in agreement with recent theoretical predictions. 

The observed BEC depletion rates are much higher when shaking both along x and y directions, as 

opposed to only x or only y. We also report an explosion of the decay rates at large drive 

amplitudes, and suggest a phenomenological description beyond Bogoliubov theory. In this 

strongly-coupled regime, circular drives heat faster than diagonal drives, which illustrates the non-

trivial dependence of the heating on the choice of drive.

An area of increasing interest in ultracold atoms concerns the engineering of novel states of 

matter using highly-controllable optical lattices [1]. In this context, a promising approach 

relies on applying time-periodic modulation to the system, in view of designing an effective 

time-independent Hamiltonian featuring the desired properties [2–4]. This Floquet 
engineering has emerged as a promising and conceptually straightforward way to expand the 

quantum simulation toolbox, enabling appealing features such as suppressed [5, 6] or laser-

assisted [7] tunneling in optical lattices, enhanced magnetic correlations [8], state-dependent 
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lattices [9], sub-wavelength optical lattices [10], as well as synthetic dimensions [11, 12], 

synthetic gauge fields [13, 14] and topological band structures [15].

Despite these promising applications, progress in Floquet engineering for interacting 

systems has been hindered by heating due to uncontrolled energy absorption. This heating, 

which stems from a rich interplay between the periodic drive and inter-particle interactions, 

is a particularly challenging problem in interacting systems, where it is known to occur due 

to proliferation of resonances between many-body Floquet states, not captured by the 

inverse-frequency expansion [4, 16]. This constrains the applicability of Floquet engineering 

to regimes where heating is slower than the engineered dynamics [9, 17–21]. A deeper 

understanding of the underlying processes is essential to determine stable regions of the 

(large) parameter space, where the system is amenable to Floquet engineering. Additionally, 

interaction-mediated heating is itself an interesting nontrivial quantum many-body process. 

Energy absorption and entanglement production in periodically driven systems have recently 

been the focus of theoretical studies [16, 22–29] and experimental investigations [5, 9, 20, 

21]. It was predicted that, whenever the drive frequency is larger than all single-particle 

energy scales of the problem, heating succumbs to a stable long-lived prethermal steady 

state, before it can occur at exponentially-long times [25, 30–35]. However, it is unclear 

whether this physics is accessible in interacting bosonic experiments

A perturbative approach to understanding drive-induced heating is to analyze the underlying 

two-body scattering processes using Fermi’s Golden rule (FGR) [21, 23, 36–38]. In the 

weakly-interacting limit, interactions provide a small coupling between noninteracting 

Floquet states. However, Floquet states cannot be treated as noninteracting when the 

Floquet-modified excitation spectrum is itself unstable [22, 24–26]. These instabilities 

indicate that heating can occur on a shorter timescale than expected from scattering theory 

alone.

For Bose-Einstein condensates (BEC) in optical lattices, increased decay rates arise due to 

the emergence of unstable collective modes. The resulting parametric heating can be 

described using a Floquet-BogoliubovdeGennes (FBdG) approach [24], and the short-time 

dynamics is dominated by an exponential growth of the unstable excited modes in the BEC. 

The depletion time of the condensate fraction provides an experimental window to observe 

this and related effects. Qualitatively different behavior is expected between scattering and 

parametric instability rates; most notably, different power laws as a function of the 

interaction strength, tunneling rate and drive amplitude.

We experimentally explore these predictions in a 2D lattice subject to 1D and 2D periodic 

drives, by measuring decay of the BEC condensed fraction. We provide strong experimental 

evidence that parametric instabilities dominate the short-time dynamics over FGR-type 

scattering processes, which are responsible for long-time thermalization [21]. Our 

experiment reveals effects beyond Floquet-Bogoliubov predictions, and points out 

limitations in the applicability of FBdG theory.

The experiments are performed on a BEC of 87Rbatoms loaded into a square 2D optical 

lattice [39, 40] with principal axes along x and y, formed by two pairs of counter-
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propagating laser beams with wavelength λ = 814 nm. The total atom number is N ≃ 105 

(±20% systematic uncertainty). Two piezo-actuated mirrors [41] sinusoidally translate the 

lattice along x and y with any desired amplitude, relative phase and angular frequency: r(t) = 

{ Δx sin (ωt), Δy sin (ωt+ϕ)}. We consider the effect of three drive trajectories on the decay 

rate: translation along x only (Δy = 0), diagonal translation along x and y (Δy = Δx and ϕ= 

0), and circular translation (Δy = Δx and ϕ = π/2). Therefore, the driving is 1D (x only) or 

2D (diagonal or circular), in a 2D system (2D array of tubes), as shown on Fig. 1. We 

express the amplitude Δx in terms of the drive-induced maximum effective energy offset 

between neighboring lattice sites in the co-moving frame, K0 = ΔE /ℏω, where ΔE 

=mω2aΔx, a is the lattice spacing and m is the 87Rb mass. The physical displacement is 

Δx = ℏK0/aωm. The lattice depth V0 is held constant during shaking, and is measured in 

units of lattice recoil energy ER = h2/mλ2. The lattice tunneling energy ℏJ and the 

interaction strength g are controlled via V0. The value of J(V0) and g(V0) are calculated 

from the band structure, peak atom density and scattering length (see appendix). This results 

in the following periodically-driven Bose-Hubbard Hamiltonian:

H(t) = ∫
z

∑
i, j

−ℏJ ai + 1, j
† (z)ai, j(z) + ai, j + 1

† (z)ai, j(z) + h . c .

− ai, j
† (z)ℏ2∂z

2

2m ai, j(z) + ℏU
2 ai, j

† (z)ai, j
† (z)ai, j(z)ai, j(z)

+ ℏωK0(isin(ωt) + κjsin(ωt + ϕ))ai, j
† (z)ai, j(z)

(1)

where aij
(†)(z) is the annihilation (creation) operator at lattice site (i, j) and transverse position 

z, and κ = 0 for x-only and κ = 1 for 2D drives. The interaction U is defined such as 

U /V ∑i, j∫z ai, j
† (z)ai, j(z) = g with V the volume of the system.

In order to avoid micro-motion effects during a drive period [10], the experiments are 

performed at integer multiples of the period T = 2π/ω (see appendix). The drive amplitude is 

ramped up smoothly [10, 42, 43] in a fixed time (minimum 2 ms) corresponding to an 

integer number of periods [Fig. 1]. The shaking is then held at a constant amplitude for a 

time τ. Finally, the amplitude is ramped down to zero in a few periods. We checked the 

effect of adiabaticity of this procedure (or lack thereof) for the three drive trajectories, and 

describe it in the Appendix (see appendix). Once the lattice is at rest, we turn it off in 300 μs 

to determine the atomic distribution. We use absorption imaging after time of flight to 

measure the condensate fraction as a function of τ.

For most conditions, the condensate decay agrees with an exponential decay 

N(t) = N(0)e−Γcft , whose rate Γcf we extract from a least-square fit (see appendix). We 

measure Γcf for the three drives at different values of ω, K0 and V0. FBdG predicts an 

undamped parametric instability, characterized by exponential growth of unstable modes, i.e. 

accelerated condensate loss. This behavior is inconsistent with the measured exponential 

decay of the BEC. Hence, the undamped FBdG regime does not last long compared to the 

typical BEC lifetime for our parameters, and interactions between the excited unstable 

Boulier et al. Page 3

Phys Rev X. Author manuscript; available in PMC 2020 February 28.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



modes and the BEC play a significant role in the observed heating process. Nonetheless, as 

we discuss below, the magnitude and scaling of Γcf are well captured by a FBdG description.

Since the Floquet-renormalized hopping is Jeff = JJ0 K0 Jν K0  is the v-th order Bessel 

function), Jeff < 0 for K0 > 2.4 and the lowest Floquet band is inverted [5]; the BEC then 

becomes dynamically unstable at q = (0, 0) [44], but a stable equilibrium occurs at the band 

edge and a sudden change in the stability point can trigger a dynamical transition [45] 

between the two equilibrium configurations. In the band inverted regime, the stable quasi-

momenta are q = (±π, 0) for a 1D drive along x, and at q = (±π, ±π) for a 2D drive along x 
and y, where the components of the crystal momentum q are measured in units of the inverse 

lattice spacing a−1. FBdG assumes an initial macroscopic occupation of these modes [24]. 

Unless stated otherwise, for data taken at K0 >2.4 we first accelerate the BEC to the 

appropriate stable point while simultaneously turning on the Floquet drive (see appendix).

Lattice depth scans:

Γcf(V0) –

A major difference between FGR and FBdG theory is the scaling of the decay rate with the 

hopping J and interaction strength g. Whereas FGR predicts Γcf ∝ (gJ)2, the parametric 

instability rate is expected to be linear (Γcf ∝ gJ) [24]. Figure 2 shows the condensed 

fraction decay rateΓcf measured at different V0 (between 7.3 ER and 17.0 ER) and ω, plotted 

as a function of gJ/ω, for the 2D-diagonal drive and 1D x-only drive. The solid lines show 

the FBdG theory, and the dashed lines are linear fits to the data. For the x-only drive, the 

magnitude and slope extracted from the data are well described by the FBdG theory, and 

while some deviations appear for the 2D drive, both results are clearly inconsistent with a 

quadratic dependence.

Amplitude scans:

Γcf(K0) –

Figure 3 shows the decay rate as a function of the drive amplitude K0, at lattice depth V0 = 

11 ER (which gives J = 2π ×50 Hz, g =2π × 700 Hz and a gap ΔEv/h = 21 kHz to the next 

vibrational level) and a drive frequency ω = 2π × 2.5 kHz. The same data is shown on a full 

range (top) and zoomed in (bottom).

Consider first the x-only drive. The instability growth rate predicted from FBdG theory [16] 

Γmum = 8JJ2 K0 g/ω, which we detail in the Appendix (see appendix), agrees with the 

measured decay rates [Fig. 3]. The appearance of the Bessel function J2 K0  in the 

expression for the rate can be traced back to the parametric resonance condition, requiring 

the excitation spectrum to match the drive frequency, cf. the Appendix. In contrast, the FGR 

scattering approach prediction is too low by a factor of about 30, and the predicted scaling, 

∝ J2 K0
2 to leading order, does not describe the data as well. The agreement with the 

FBdG theory, despite evidence for effects beyond simple undamped parametric instability, is 

consistent over a range of parameter space in K0, ω and V0. As expected, the decay 

dramatically increases when Jeff < 0 (K0 > 2.4) for q = (0, 0), while it is partially stabilized 
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when accelerating the BEC to q=(π, 0). We note that significant heating occurs during the 

drive turn-on and acceleration phase for the q = (π, 0) data, resulting in partial BEC losses.

For the two 2D drives (circular and diagonal) we observe decay rates that follow roughly the 

same functional form as the 1D drive, but about 3× larger. Additionally, the sudden increase 

in the decay rate Γcf for the 2D drives consistently occurs at a critical amplitude K0
c below 

2.4. At 11 ER, K0
c ≃ 2.15 [Fig. 3]. Above K0

c, both 2D rates increase dramatically beyond any 

prediction and the circular rate increases faster than the diagonal rate. This drive dependence 

and drastic rate increase for K0
c <K0 < 2.4 suggest effects beyond FBdG theory, distinct from 

the simple parametric instability, and are discussed at the end of this Letter. For K0 ≳ 2.4, 

the rates are essentially unmeasurable since Γcf >ω. As with the 1D drive, accelerating the 

BEC to q = (π, π) partially stabilizes the decay, just enough to be measurable.

Frequency scans –

Γcf(ω):

FBdG theory predicts distinct behavior at low and high drive frequencies. In the low-

frequency regime, the momenta of the maximally-unstable mode qmum evolve as one 

increases the drive frequency, until it saturates at the Bogoliubov band edge at qmum = {(π, 

0)}, {(π, 0), (0, π)}, and {(π, π) for x-only, circular and diagonal drive, respectively. The 

periodic drive results in interference which depends on the relative phase of the two 

components of the drive, leading to different most unstable modes for the three shaking 

geometries. The saturation frequency ωc = Eeff
Bog qmum  marks the onset of the high-

frequency regime [24]. Note that unlike in 1D lattices [24] the energy of the maximally 

unstable mode can be lower than the full effective bandwidth (see appendix). The rate is 

predicted to increase quasi-linearly for ω ≤ ωc while Γmum ∝ ω−1 for ω ≥ ωc [21, 24], 

resulting in a cusp in the rate at ωc. A detailed derivation of the expressions for the most 

unstable modes and the instability rates are given in the Appendix.

Figure 4 shows the experimental values for Γcf(ω) compared with FBdG theory. Since there 

is no observed rate explosion for the x-only drive, we use the cusp in Γcf
x (ω) to calibrate our 

experimental value for g, which agrees to within 20% with an estimate calculated from the 

lattice parameters (see appendix). Using this value of g, the prediction for the diagonal drive 

ωc
Diag matches the experiment. While FBdG theory predicts the same ωc for circular and x-

only drives, the measured cusp for the circular drive lies between the cusps of the two linear 

drives.

The observed behavior qualitatively fits FBdG theory, with rates generally higher than 

predicted for ω ~ ωc. For the x-only drive, the measured rates are slightly above the 

prediction below 2π × 1.5 kHz, and the agreement is excellent above 2π × 1.5 kHz, as 

observed with Γcf(K0) at 2π × 2.5 kHz [Fig. 3]. The 2D rates show a larger discrepancy at 

low frequencies, and a decent quantitative agreement for ω ≳ 2π × 2 kHz. This is related to 

the rates explosion appearing for K0 > K0
c. As we discuss below, the observed value of K0

c
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increases with the frequency. This implies a similar rate explosion should happen when 

decreasing ω at fixed K0. This is especially visible with the diagonal drive [Fig. 4]: for ω < 

2π ×1 kHz the data abruptly departs from the prediction. This increased rate at low 

frequencies for 2D drives is likely responsible for the discrepancy between experiment and 

theory. The presence of the cusps in the rate explosion region is still expected since, for ω 
low enough, some modes are energetically inaccessible, and the limit Γcf(ω → 0) → 0 must 

be fulfilled.

Rates explosion –

Beyond a critical amplitude K0
c, we observe a sudden increase of the 2D-driven decay rate 

[Fig. 3]. The dependence of K0
c on the frequency for circular driving at V0 = 11 ER is shown 

in Fig. 5. We observe that K0
c 2.4 as ω → ∞, suggesting that the giant heating arises from 

a finite-frequency effect. Because the effect appears for both diagonal and circular drives, 

whereas a perturbative argument using the inverse-frequency expansion shows that there are 

finite 1/ω corrections only for the circular drive, we surmise that the effect is likely non-

perturbative. Assuming the anomalously strong heating results from an interplay of 

correlated physics beyond the Bogoliubov regime, and recalling that resonance effects 

beyond the infinite-frequency approximation lead to a 1/ω dependence in the instability rates 

[2–4], we make the following scaling argument. Viewing the system as an effective Bose-

Hubbard model, the strongly-correlated regime is reached for g/Jeff ≳ 1. On the other hand, 

we note that corrections to the infinite-frequency Floquet Hamiltonian scale as J/ω. We 

make the phenomenological observation that the dimensionless ratio (g/Jeff)(J/ω) should be 

relevant to a combination of beyond-mean-field and finite-frequency effects. When Jeff is 

low in all lattice directions, (g/Jeff)(J/ω) is large and, therefore, these effects should be large. 

The simple scaling relation g/ωJ0 K0 = 1 gives K0
c(ω) = J0

−1(g/ω), and is shown as the red 

line in Fig. 5 with the experimental data. The agreement is surprisingly good for such a 

simple argument. The quantum many-body nature of the rates explosion calls for more 

extensive study, that promises new insights into periodically-driven strongly-correlated 

quantum lattice systems.

We present a detailed investigation of heating for interacting bosons in a periodically driven 

2D lattice. The observed decay rates are substantially larger than expected from a scattering 

theory based on Fermi’s golden rule [21], and scale as expected for interaction-driven 

parametric instabilities [24]. The observed exponential decay of the condensed fraction 

suggests that interactions between these excited modes and the BEC, not captured by FBdG 

theory, play an important role in the dynamics. Nonetheless, the linear scaling of the 

condensate loss rate with gJ/ω is indicative of direct, interaction-induced instabilities. 

Importantly, these instabilities arise from collective modes and involve coherent processes, 

unlike scattering in a purely FGR approach. In addition, for 2D driving, there exist regions 

where the heating is even larger than predicted by FBdG, which is not explained by current 

theories. Altogether, our observations provide important insight into a major heating 

mechanism in bosonic systems subject to a position-modulation drive, a valuable knowledge 

for future many-body Floquet engineering schemes.
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We note that complementary signatures of parametric instabilities have been recently 

investigated with bosonic atoms in periodically-driven 1D optical lattices [46].
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APPENDIX

Thermalization of excited atoms

The condensate fraction can decay either by direct Floquet-driven loss or by heating due to 

relaxation of energetic excitations. The latter mechanism occurs over a thermalization time 

scale, and can be probed by observing relaxation of out of equilibrium states in an un-driven, 

static lattice. Special attention to the drive turn off is required to avoid unwanted excitation 

due to micro-motion during a drive period. Abruptly turning off the drive induces a kick 

large enough to create a significant out-of-equilibrium population by inter-band excitation.

To determine the relaxation time scale and test for this additional condensate loss 

mechanism, we measured the evolution of the condensed fraction when holding the atomic 

cloud in a static lattice, immediately after an abrupt stop of the drive. While the condensed 

fraction is initially unchanged, upon letting the static system evolve for a time thold, we 

observe a subsequent decrease of the condensed fraction as excited atoms thermalize with 

the rest of the sample. Fig. 6 shows an example of thermalization for a diagonal drive at ω = 

2π × 2 kHz. When there is sufficient initial excitation (blue data on figure 6), we observe a 

characteristic thermalization time of order 2 ms, that does not depend on the initial non-

equilibrium population.

We observe that the condensed fraction increases slightly with hold time in the cases where 

minimal atom excitation occurs (red and green data in figure 6). We attribute this to 

rethermalization along the tube axis: entropy added in the degree of freedom associated with 

the lattice direction can be redistributed along the z (tube) axis, which is visible as a slightly 

decreased temperature in the x-y plane.

The amplitude of the condensed fraction decrease is indicative of the energy of the initial 

non-equilibrium population. We can measure this amplitude by comparing the condensed 

fraction at thold = 0 and thold = 6 ms, a time sufficient for the thermalization to have 

occurred. Fig. 7 shows the remaining condensate fraction after thold = 6 ms as a function of 

the phase at which the drive is stopped, for an abrupt stop (blue) and for a smooth but rapid 
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(1 period) turn off (green). When the stop is abrupt, the fraction of atoms excited depends on 

the end phase: abruptly immobilizing the lattice can induce an effective force which depends 

on the lattice velocity immediately prior to immobilization. Therefore the excited fraction is 

maximized when q̇(t) is maximally discontinuous (stop phases of 0[π] rad) and minimized 

when smooth (stop phases of π
2 [π] rad). In all our decay rate data where we smoothly turned 

off the drive (in at least one period), no turnoff-induced heating was observed.

Abruptly stopping the drive is not the only potential source of non-equilibrium population. 

The unstable Bogoliubov modes studied in the main text could themselves produce a 

population that thermalizes, and that could potentially modify the measured decay rates. 

This can be tested with the same stop-and-hold measurement, if turnoff-induced populations 

are avoided. As visible in Fig. 7, this is realized for stop phases of π
2 [π] rad or when 

smoothly turning off the drive. For our data, avoiding turnoff-induced population when 

stopping the drive results in no visible decay. This is shown as the green data in Fig. 6. The 

result is identical for the whole region of parameter space studied here. We deduce that the 

energy carried by the non-equilibrium population created by the unstable modes is not 

enough to significantly impact the measured rates.

Experimental considerations

Accelerating the BEC to the band edge. –

In order to accelerate our BEC from q = (0, 0) to a desired q = (qx, qy), we apply a constant 

force F = q.  for a fixed time in the lattice plane. The force is generated with a constant 

magnetic gradient, acting on the BEC in the| F = 1, mF = −1〉 ground state. Bias coils in the 

three spatial directions control the gradient direction.

The BEC becomes unstable for quasimomenta about halfway to the band edge: this is the 

well-known static instability [44]. On the other hand, as mentioned in the main text, ramping 

up the drive amplitude beyond K0 = 2.4 reverses the band smoothly as Jeff becomes negative: 

q ~ (0, 0) becomes unstable and the band edges (or corners, depending on the drive 

trajectory) become stable. In order keep the BEC in a stable region (in a effectively static 

dynamical stability sense) at any given time, we synchronize the BEC acceleration with the 

ramping on of the drive, such that the BEC crosses the static instability point q = 0.6 π/a 
when K0 = 2.4.

We accelerate the BEC to q = (π, π) for the two 2D drives (diagonal and circle) and to q = 

(π, 0) for the x-only 1D drive, since these become stable whenever K0 > 2.4.

Calibration of translation amplitude. –

The piezo-actuated mirrors were each roughly calibrated offine using an interferometric 

technique [41]. The final calibration was performed on the atoms by measuring the 

tunneling-dependent magnetization decay rate of 2D staggered spin magnetization [49] as a 

function of drive strength K0. The drive strength at which the tunneling rate Jeff vanishes is 

determined by the condition K0 = 2.4.
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Calibration of tight-binding parameters. –

The lattice depth is calibrated via Raman-Nath diffraction. In the tight-binding limit, the 

tunneling rate is derived through the modeled 1D dispersion as

J ≡ E(q = π/a) − E(q = 0)
4 (2)

The on-site interaction g is calibrated from the x-only drive cusp (see Fig. 4). The point at 

which the rates go from increasing to decreasing, ωc
Diag, is given by

ωcx = 4Jeff 4Jeff + 2g . (3)

Knowing J, the experimental value of ωcx offers a calibration for g. For V0 = 11 ER, J = 50 

Hz and the measured value of ωcx = 444Hz gives g = 700 Hz. As an additional check, this 

value of g is then used to predict the diagonal drive cusp, 

ωc
Diag = 8Jeff 8Jeff + 2g = 655 Hz. The observed value of ~ 650 Hz is in good agreement 

with this prediction.

The interaction strength g depends upon the atom number, the dipole trap and the lattice 

parameters. To confirm that the experimental calibration matches these known experimental 

parameters, we also estimate g through tight binding and Thomas-Fermi assumptions: in the 

lattice plane, the wavefuntion ψ(x) is taken to be well approximated by a Mathieu function, 

while we use a Thomas-Fermi profile in the tube direction. The interaction energy 

g ∝ ∬−a/2
a/2 |ψ(r) |4d2r is then calculated from the known experimental parameters, including 

the density profile due to the dipole trap (frequencies {ωx, ωy, ωz} = {11, 45, 120} Hz). For 

V0 = 11 ER we find g = 850 Hz, similar to the calibrated value of 700 Hz. Note that the 

systematic 20% uncertainty in the atom number can easily explain the small offset between 

estimation and calibration.

Bandwidths –

It is important to note that ωc is in general different from the effective bandwidth B. For a 

2D (diagonal or circular) drive in our 2D lattice,

B2D = 8J J0 K0 × 8J J0 K0 + 2g (4)

and, with a 1D drive in the 2D lattice,

B1D = 4J J0 K0 + 1 × 4J J0 K0 + 1 + 2g , (5)

which is in general different from ωc, as observed in the main text: only in the case of the 

diagonal drive do we find that the maximally unstable mode had the maximum ground band 

energy, and therefore ωc = B.
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Background rates. –

All theoretical plots take into account the background decay rate, predominantly due to 

lattice photon scattering. We experimentally determine this by setting K0 = 0 and measuring 

the resulting rate with the same procedure as in the main text. This constant rate y0 ~1s−1 for 

V0 = 11 ER is then added to the FBdG formula for comparison with the experimental data. 

Since multi-photon resonances to higher bands [50] could complicate the interpretation of 

the measured decay rates, we performed heating measurements up to drive frequencies of ω 
= 2π × 21 kHz to identify excited band resonances. Population transfer to higher bands is 

directly visible on the bandmapping images. The lowest frequency at which resonant higher 

band excitation was observed was ω = 2π × 6.25 kHz for V0 = 11ER, and we therefore 

limited our heating measurements to below 2π × 4 kHz to avoid these effects.

Heating in the absence of Floquet drive –

To rule out heating mechanisms that do not depend on the drive but are instead related to the 

change in Jeff, it would be useful to compare the heating observed at a given K0 to the 

heating observed in a static lattice with a depth chosen to have an equivalent J = Jeff (for Jeff 

> 0). Here, such direct comparison is experimentally challenging under the same conditions 

as the Floquet experiment, due to the change in the trap confinement when increasing the 

lattice depth. In addition to a potential change in gravitational sag (which we have 

minimized by aligning the optical lattice beams directly on the dipole-trapped BEC), the 

change in trap frequency when changing the lattice depth can excite breathing motion along 

the non-lattice tube direction, as well as cause a redistribution of atoms within the trap 

transverse to the lattice direction. These trap-changing effects do not occur for the Floquet 

modification of the tunneling. To avoid this motion / redistribution, one needs to increase the 

lattice adiabatically, i.e. on a slower timescale than the Floquet drive is turned on. 

Nonetheless, we did a type of comparison to the data in figure 2 by turning on the lattice 

slowly (over 200 ms) to a final lattice depth to obtain a given static J, and observed the 

condensate fraction. As an example, we increased the lattice depth to 18.2 Er, which changes 

the tunneling from J = 2π × 50 Hz at 11 Er to J = 2π × 12 Hz at 18.2 Er, corresponding in 

the Floquet case to K0 = 2. The fact that there is still condensate remaining after the 200 ms 

turn on is already an indication that the condensate decay rate in the unshaken lattice is slow. 

Measuring the condensate decay rate at this depth gives Γ/2π = 2 s−1, which is slower than 

the equivalent Floquet rate by a factor of nine, and slower than all the data at K0 = 2.1 shown 

in figure 2 by at least a factor of seven.

Extracting the decay rates

Rates extraction –

Our data consists of series of measured condensed fractions after various driving times. A 

time series typically presents an exponential-looking decay. An example for such decay is 

given in figure 8. Since we focus on early the time decay rate, greater weight is given to 

earlier data points. We fit to an exponential with no offset (2 fit parameters): f(t) = Ae−Γcft, 
where A is the t=0 condensed fraction (typically A ≥ 0.5). The rates presented in this 
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manuscript are the extracted fit parameter Γcf, and the uncertainties correspond to ±1 

standard deviation.

A small fraction of the experimental data doesn’t show an exponential decay. In such cases, 

the condensed fraction vs time looks linear, which is indicative of an acceleration relative to 

an exponential decay. Whenever fitting to an exponential was impossible, we took the slope, 

focusing on early times where the condensed fraction was more than half that of t = 0. In any 

case, the measured decay rate under all conditions corresponds to the decay rate at initial 

times.

For these rates to be directly compared to the BdG prediction, additional considerations 

must be taken. First, let us consider a maximally unstable Bogoliubov mode with an 

amplitude predicted to grow as eΓmumt. An experiment will actually detect a rate 2Γmum, as 

it measures an amplitude squared (typically, the number of atoms in the unstable mode). 

Second, since the experiment measures how many atoms leave the BEC (to populate the 

modes) per unit of time, it is sensitive to the number of simultaneous maximally unstable 

modes, as each is a decay channel. If two modes are equally and maximally unstable, as is 

possible in 2D, then an additional factor of 2 is needed in the theory to compare to the 

experiment. This multiple-modes factor is 1 for the x-only drive, and 2 for the circle and 

diagonal drives. All these extra factors were added to the theory plots throughout this paper: 

in total, the x-only drive theory is 2× and the circle and diagonal drives are 4× larger than the 

bare BdG rates predicted in [24]. These points are expanded in the derivation of the FBdG 

rate Γmum later in this Appendix.

Rate explosion: circular versus diagonal –

We observe that the circular decay rate increases faster than the diagonal rate for K0 > K0
c. 

For example, figure 9 shows a zoomed-in version of figure 3, where V0 = 11 Er and ω = 2π 
× 2.5 kHz, to make this observation clearer. The rates go from being approximately equal 

below K0
c, to Γcf

circ > 2Γcf
diag when tunneling is suppressed. Since breaking time-reversal 

symmetry is necessary for many proposed schemes, this observation may be of interest to 

the Floquet engineering community.

Difficulties associated with dynamical rates –

In the main text, we compared the decay rates measured in the experiment to the instability 

rates predicted by FBdG theory. Here, we elaborate on some intrinsic difficulties in the 

procedure which may affect the extracted values.

As explained in Ref. [24], for drive frequencies below the effective drive-renormalized 

Floquet-Bogoliubov bandwidth, there exists an entire manifold of resonant modes. While all 

of them contribute to expectation values of observables at very short times, only the 

maximally-unstable mode qmum dominates the long-time BdG dynamics, and the rate 

associated with qmum sets the parametric instability rate. Thus, at any finite time, the FBdG 

dynamics is in a crossover between these two regimes, which shrinks exponentially with 

time. Yet the time-width of this crossover also depends on the drive frequency: the higher the 
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frequency, the smaller the instability rate and the longer it takes for the exponential behavior 

to become visible.

When extracting the rates from data, effects due to this crossover become relevant. To test 

this, we performed exact numerical simulations of the BdG equations of motion, and 

computed the dynamics of the excited fraction of atoms nq(t) over a finite number of driving 

cycles, which increases suitably with the drive frequency. We then extracted the instability 

rates using least-square fitting as the slope of log nq(t) over the last eight driving cycles, to 

maximally eliminate transient effects. A comparison between the numerically-extracted rates 

and the analytic theory prediction is shown in Fig. 10 for the three types of drives. Note that 

the agreement becomes worse at larger ω, since this decreases the rate and pushes the 

exponential regime to later times. This is a source of error, which is certainly relevant for the 

experimental determination of the rates.

Additionally, in the experiment there are strong beyond Bogoliubov effects, not captured by 

FBdG theory. Due to the nonlinearity of the Gross-Pitaevskii equation which leads to 

saturation of the condensate depletion, the exponential BdG regime mentioned above crosses 

over into a third, scattering-dominated regime. In this regime, the population transferred 

coherently to the maximally-unstable modes by the parametric resonance starts decaying 

into the surrounding finite-momentum modes at high energy, leading to uncontrolled 

irreversible heating [25]. This suggests that the instability rates can change in time. This 

additionally obfuscates the comparison of the experiment with the FBdG theory.

HEATING DYNAMICS OF THE TRUNCATED WIGNER APPROXIMATION

While FBdG theory is valid in the short-time regime of the dynamics, it has some serious 

deficiencies. Perhaps the most notable of these, when it comes to out-of-equilibrium 

dynamics, is the lack of particle-number conservation: the condensate is assumed to be an 

infinite reservoir which supplies particles to indefinitely increase the occupation of pairs of 

modes with finite and opposite momenta. In equilibrium, this description works well and 

captures the physics in the superfluid phase. Away from equilibrium, however, condensate 

depletion processes such as the parametric instabilities studied in this work lead to 

significant depletion of the BEC and the mean-field Bogoliubov description ultimately 

breaks down under typical observation times.

Particle conservation is obeyed in the Truncated Wigner Approximation (TWA), which also 

includes nonlinear interactions modeling collisions between Bogoliubov quasiparticles [51, 

52], and is capable of describing thermalization at later stages, due to the continuous 

pumping of energy into the system.

The starting point for the TWA is the Gross-Pitaevskii equation which, in the co-moving 

real-space frame, reads (ℏ = 1)

i∂tar(t) = − J ar + aex(t) − ar − aex(t) − J ar + aey(t) − ar − aey(t) − ∂z
2

2m ar(t)

+ ωK0r ⋅ sin(ωt)ex + κdsin(ωt + ϕ)ey ar(t) + U ar(t) 2ar(t),
(6)
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where ar(t) models the bosonic system at time t and position r = (x, y, z). The kinetic energy 

reflects the lattice degrees of freedom in the (x, y)-plane, and the continuous transverse 

mode along the z-axis. The periodic drive is in the (x, y)-plane with frequency ω and 

amplitude K0. κd = 0 for the x-only drive and κd = 1 for both 2D drives. ϕ is the relative 

drive phase between x and y (ϕ = 0 for diagonal drive and ϕ = − π
2  for circular drive). 

Finally, the on-site interaction strength is denoted by U (such that U /V ∑i, j∫ dz ar
2 = g).

Since at time t = 0 the system forms a BEC of N0 atoms in a volume V, assuming a 

macroscopic occupation n0 = N0/V  in the uniform (q= 0) condensate, the field ar can be 

decomposed as

ar = n0 + 1
V ∑

q ≠ 0
uqγqe−iq ⋅ rj + v−q* γ−q* e+iq ⋅ rj, (7)

where uq and vq are the Bogoliubov modes which solve the time-independent BdG 

equations at t = 0 [24]. Here, γq is a complex-valued Gaussian random variable [associated 

with the quantum annihilator γq of Bogoliubov modes] with mean and variance set by the 

corresponding quantum expectation values in the Bogoliubov ground state [51].

Hence, in the TWA one draws multiple random realizations of γq, each of which 

corresponds to a different initial state. One then evolves every member of this ensemble 

according to Eq. (6), computes the observable of interest, and takes the ensemble average 

( ⋅ ) in the end. For instance one can compute the total number of excited atoms as

nex(t) = 1
V ∑

q ≠ 0
aq(t) 2, (8)

which, due to particle number conservation also reflects the dynamics of the condensate 

depletion.

In general, we expect that the condensate depletion curve shows two types of behavior: at 

short times FBdG theory applies and nex ~ exp(2Γmumt) grows exponentially in time. Hence, 

the condensate depletion curve |aq=0(t)|2 = V (n0 − nex(t)) is concave. At long times, 

nonlinear interaction effects in the GPE become important, leading to saturation, and the 

curvature of condensate depletion changes sign. Therefore, in the long-time regime the curve 

is concave. The opposite behavior is true for the evolution of the excitations nex(t). The 

curvature of the experimental data, cf. Fig. 8, suggests that the system enters well into the 

long-time regime. Yet, the measured decay rates appear consistent with the short-time 

Bogoliubov theory [main text].

To shed light on this intriguing observation, we perform TWA simulations on a periodically-

driven homogeneous system in (2+1)-dimensions, and extract the short-time and long-time 

rates from the numerical data. We use a comparison with the BdG simulations, to separate 

the short-time regime (where agreement between BdG equations of motion and TWA is 

expected) from the longer-time regime [11 left panel]. For the sake of comparison with 
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experiments, we fit the long-time TWA growth to an exponential, even though we find that it 

follows a more complicated functional form.

Figure 11 [right panel] shows a scan of the TWA rates over the effective interaction 

parameter g. We find that both the short-time and long-time rates are of similar strength. 

More importantly, they do not show a quadratic scaling in g, as predicted by Fermi’s Golden 

Rule. This behavior is consistent with the experimental observations. Note the mismatch 

between FBdG theory [black] and the short-time BdG simulations [blue], which arises since 

the most unstable mode does not yet dominate the dynamics at such short times [see Fig. 10 

and corresponding discussion]. Indeed, we find an excellent agreement between BdG 

numerics and FBdG theory if we extract the rates from the long-time regime. The short-time 

BdG rates agree qualitatively with the short-time TWA rates, as expected from the 

agreement seen in Fig. 11 [left panel]. The rates are extracted from a least-square fit over the 

last 5 consecutive driving cycles of short-time region of agreement between BdG and TWA. 

Since the rates are dynamical, i.e. change depending on the time-window used to extract 

them, the curves in Fig. 11 [right panel] are not smooth.

We also did a frequency and amplitude scans of the long-time TWA rates to look for 

signatures of the Bessel function J2 K0 , and the cusp at the critical frequency ωc, as 

expected from FBdG theory and found experimentally. Unfortunately, we do not see clear 

signatures of such behaviors in our TWA simulations. Thus, we cannot conclude that the 

TWA captures the long-time thermalization dynamics of driven bosonic cold atom systems 

accurately. More interestingly, the rates explosion [see main text] is also beyond the TWA 

dynamics, suggesting that quantum effects, such as loss of coherence, are important for 

describing this phenomenon. Another possible reason for disagreement is the single band 

approximation, as its validity for the Floquet system has not been fully understood so far.

MOST UNSTABLE MODES FOR LINEAR, DIAGONAL AND CIRCULAR 

LATTICE DRIVES WITHIN FBDG THEORY

In this appendix, we briefly revisit the derivation for the most unstable mode within FBdG 

theory [26], and extend the results to diagonal and circular drives. The take-home message is 

that the critical saturation frequency ωc, which defines the position of hte cusp in the 

instability rate curves, coincides for the linear and circular drives; for the diagonal drive the 

value is twice as large on the square lattice. It is straightforward to extend the analysis below 

to other lattice geometries.

The starting point are the BdG equations of motion for the mode functions uq(t) and vq(t) in 

the rotating frame

i∂t
uq
vq

= ε(q, t) + g g
−g −ε( − q, t) − g

uq
vq

, (9)

where ε(q, t) ≥ 0 denotes the time-dependent free lattice dispersion relation [shifted by the 

chemical potential so that it is non-negative].
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To analyze the effects of parametric instabilities, we first isolate the time-average term and 

write ε(q, t) = εeff (q) + g(q, t). This will separate the right-hand-side of the BdG EOM 

separate in an effective time-averaged term, and a time-periodic perturbation. Following Ref. 

[24], we now apply a phase rotation, followed by a static Bogoliubov transformation w.r.t. 

εeff (q):

uq
vq

=
cosh θq sinh θq
sinh θq cosh θq

e−2iEeff
Bog(q)t 0
0 1

uq′
vq′

,

where cosh 2θq ≡ εeff(q) + g /Eeff
Bog(q) and sinh 2θq ≡ g/Eeff

Bog(q) with

Eeff
Bog(q) = εeff(q) εeff(q) + 2g

the time-averaged Bogoliubov dispersion. The Bogoliubov transformation diagonalizes the 

effective static time-average term, while the phase rotation makes it easier to identify the 

parametric resonant terms [see App. C in [24], and the Supplemental Material to Ref. [25] 

for an application to the paradigmatic parametric oscillator]. The BdG EOM now read

i∂t
uq′
vq′

= Eeff
Bog(q)1 + W q(t) + sinh 2θq

0 ℎq(t)e−2iEeff
Bog

(q)t

−ℎq(t)e2iEeff
Bog(q)t 0

uq′
vq′

,

(10)

where

W q(t) =
gq(t)cosh2 θq + g−q(t)sinh2 θq 0

0 −g−q(t)cosh2 θq − gq(t)sinh2 θq
,

ℎq(t) = 1
2 gq(t) + g−q(t) .

(11)

By definition of gq(t), the diagonal matrix Wq(t) has vanishing period average, and hence 

does not contribute to the parametric resonance to leading order. At the same time, the off-

diagonal term in Eq. (10) will be dominant, whenever hq(t) interferes with the phase term 

e2iEeff
Bog

 (q)t constructively. This latter condition will give the resonant frequencies. In a 

sense, hq(t) can be thought of as an effective periodic drive, the amplitude of which, 

multiplied by the prefactor 2θq = g/Eeff
Bog(q), determine properties of the resonance, such as 

the maximally unstable mode.

Let us now analyze the function hq(t) for the three types of drives we study in the main text:

Linear Drive—using the Jacobi-Anger identity, we have

Boulier et al. Page 15

Phys Rev X. Author manuscript; available in PMC 2020 February 28.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



εqlin(t) = 4J sin
qx
2 sin

qx
2 − K0sinωt + sin2qy

2 ,

ℎqlin(t) = 4J cos K0sinωt sin2qx
2 + sin2qy

2 − εeff(q)

= 8Jsin2qx
2 ∑

l = 1

∞
J2l K0 cos(2lωt) .

The fact that the system is driven only along the x-direction is reflected in the 

momentum dependence of hq(t). Applying the rotating wave approximation to the 

time-periodic off-diagonal term in Eq. (10), we conclude that the dominant resonant 

harmonic is l = 1, which gives ω = Eeff
Bog(q). Using the relation 

2θq = g/Eeff
Bog(q) = g/ω, the momentum-dependent instability rate reads [24]

slin(q) = 4JJ2 K0  sin2 qx
2

g
ω . (12)

Clearly, there are many resonant modes, which satisfy the condition ω = Eeff
Bog qres . 

This condition is visualized as a plane, parallel to the (qx, qy)-plane, cutting through 

the dispersion relation: the resulting set of modes defines the solutions to the resonant 

condition.

However, out of all resonant modes, not all have the same instability rate, because 

slin(q) is a function of q. We are interested in the long-time BdG dynamics, which is 

dominated by the most unstable mode:

γ = max
q

s(q),  qmum = argmaxqs(q) . (13)

Since slin(q) is a monotonic function of only qx, the most unstable modes are those 

resonant modes, which have the largest qx-component. Gradually increasing the drive 

frequency ω, one reaches a critical saturation frequency ωc = Eeff
Bog(π, 0) at the edge of 

the Brillouin zone. Using the same analysis as in Ref. [24] and keeping in mind the 

existence of a continuous degree of freedom in the z (tubes) direction, one can show 

that for ω ≥ ωclin, we have qmumlin = (π, 0) and γlin  = 4JJ2 K0 g/ω, while for ω ≤ ωclin, 

we find qmumlin = 2arcsin g2 + ω2 − g
4JJ0 K0

( ± 1, 0), and the rate is independent of the 

hopping and given by

γlin  = ( g2 + ω2 − g)
J2 K0
J0 K0

g
ω .

Because qmumlin  is located at the side edge of the 2D Brillouin zone, the saturation 

frequency for linear drive ωclin equals half the effective 2D Bogoliubov bandwidth.

Diagonal Drive—similarly, we find
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εq
diag(t) = 4J sinqx

2 sin qx
2 − K0sinωt

+sin2qy
2 sin qy

2 − K0sinωt ,

ℎq
diag(t) = 4Jcos K0sinωt sin2qx

2 + sin2qy
2 − εeff(q)

= 8J sin2qx
2 + sin2qy

2 ∑
l = 1

∞
J2l K0 cos(2lωt) .

(14)

It follows that

sdiag (q) = 4J sin2qx
2 + sin2qy

2 J2 K0
g
ω .

As expected, the expression is symmetric w.r.t. exchanging qx and qy. The critical 

saturation frequency ωc
diag is achieved when the maximally unstable mode reaches the 

Brillouin zone boundary qxmum, qymum = (π, π). For ω ≥ ωc
diag, the maximally unstable 

mode qmum
diag = (π, π) and γdiag  = 8JJ2 K0 g/ω. Notice that γdiag = 2γlin in this regime, 

due to the presence of the second shaken direction which enhances the instability 

rate. In the other regime, ω ≤ ωc
diag, we find qmum

diag = 2arcsin g2 + ω2 − g
8JJ0 K0

× ( ± 1, ± 1)

and γdiag = ( g2 + ω2 − g)
J2 K0
J0 K0

g
ω  Here, γdiag = γlin.

Because qmum
diag  is located at the corner of the 2D Brillouin zone, the saturation 

frequency for diagonal drive ωc
diag equals the full effective 2D Bogoliubov bandwidth.

Circular Drive— we find:

εqcirc(t) = 4J sinqx
2 sin qx

2 − K0sinωt

+sin2qy
2 sin qy

2 + K0sinωt ,

ℎq
circ(t) = 4J sin2qx

2 cos K0sinωt

+sin2qy
2 cos K0cosωt − εeff(q)

= 8J sin2qx
2 − sin2qy

2 ∑
l = 1

∞
J2l K0 cos(2lωt) .

(15)

It follows that

scirc(q) = 4J sin2qx
2 − sin2qy

2 J2 K0
g
ω .

Note the change in signature compared to the diagonal drive. Therefore, unlike the 

diagonal drive, and rather similar to the linear drive, the critical saturation frequency 

Boulier et al. Page 17

Phys Rev X. Author manuscript; available in PMC 2020 February 28.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



ωccirc is achieved when the maximally unstable mode reaches the side edge of the 

Brillouin zone qxmum, qymum = (π, 0), (0, π) . For ω ≥ ωccirr, the maximally unstable 

modes are qmumcirc = (π, 0), (0, π)  and γcirc = 4JJ2 K0 g/ω. Notice that γdiag = 2γcirc 

and γcirc = γlin in this regime, due to the circular form of the drive. In the other 

regime, ω ≤ ωccirc, we find qmumcirc = 2arcsin g2 + ω2 − g
4JJ0 K0

× ( ± 1, 0), (0, ± 1)  and 

γcirc = ( g2 + ω2 − g)
J2 K0
J0 K0

g
ω . Here γdiag = γcirc = γlin.

Because qmumcirc  is again located at the side edge of the 2D Brillouin zone, the 

saturation frequency for circular drive ωccirc equals half the effective 2D Bogoliubov 

bandwidth [similar to linear drive].

The above analysis was performed for a pure 2D lattice system. However, adding the 

transverse tube dimension is straightforward and does not change these conclusions 

[24], cf. Fig. 10 for a numerical simulation in the presence of a tube-like transverse 

direction.

Finally, note that the instability rate γ derived above corresponds to the growth rate of 

the bosonic operators bq(t) and bq
†(t), which are not observable. Observables, 

consisting of bilinears of the bosonic operators, will thus display a parametric 

instability rate

Γmum = 2γ (16)

for each maximally unstable mode.

Furthermore, an atom number variation per unit time (an experimental rate) will 

depend on how many such modes are present simultaneously. For the linear drive, 

there exists a single maximally unstable mode (π, 0), while there exist two equally 

unstable modes for the diagonal drive ({(π, π), (−π, π)}) and for the circular drive 

({(π, 0), (0, π)}). Therefore we expect an additional factor of 2 inΓmum for the two 

2D drives. In total:

Γmum
lin = 2γlin, (17)

Γmum
diag = 4γdiag, (18)

Γmum
circ = 4γcirc . (19)

As a final remark, we note that while a choice of small K0 explores the 2D quasi-

parabolic dispersion found at small BEC momenta, the above derivation shows that 

the problem still cannot be treated as rotationally-symmetric: the resonant modes are 

determined by the drive frequency through the resonance condition. Therefore, even 
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for small drive amplitude K0, resonant Bogoliubov modes can be in the middle of the 

dispersion, where rotational symmetry is lost. Hence, the distinctions between 1D and 

2D drives are expected, and observed, to hold even in the small K0 limit.
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FIG. 1. Schematic of the lattice driving.
(up) Lattice translation is performed along the x-direction (green), the diagonal (blue), and 

in circles (red). The normalized drive amplitude projected along the x-axis, K0, is used to 

characterize the drive strength for all trajectories. (down) Example of periodic drive for a 

circular driving.
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FIG. 2. 
Γcf(Jg/ω): Measured decay rates for K0 = 2.1, ω = 2π×4 kHz (filled circles) and ω = 2π × 

2.5 kHz (empty circles) and various lattice depths, compared to FBdG theory. The horizontal 

axis is Jg/(2 × ω), since FBdG theory predicts the modes growth rate to be linear in J, g and 

1/ω, as derived in the Appendix (see appendix). The dashed lines are linear fits to the data.
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FIG. 3. 
Γcf(K0): Comparison between circular (red), diagonal (blue) and x-only (green) drives for 

V0 = 11 ER and ω = 2π × 2.5 kHz. The rates are in units of J = 2π × 50 Hz, shown full scale 

(top) and zoomed in (bottom). The Floquet-Bogoliubov-deGennes theory [24] Γmum is 

shown for each drive as solid lines, and the 1D FGR-based scattering theory is shown as the 

green dashed line (zoom only). Filled circles indicate data taken at q = (0, 0), while open 

circles indicate data taken at q=(π, π (0)) [see text] to keep the BEC in the stable region of 

the band (illustrated with the bottom plot cartoon). A dramatic increase in the rate occurs at 

K0
c > 2.4 for the circular and diagonal drives, highlighted by the light red region.
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FIG. 4. Decay rates vs drive frequency.
Γcf(ω) for the three drive trajectories at K0 = 1.25 and V0 = 11 ER. The Floquet-Bogoliubov-

deGennes theory Γmum(ω) is shown for each trajectory as dashed lines. The theoretical cusps 

positions are marked as vertical black dashed lines. The value we use for g is fitted to the x-

only drive cusp, and is close to the expected value (see appendix). Rate explosion occurs at 

low frequencies when K0 > K0
c(ω) [cf. Fig. 3], represented as the light red zone.
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FIG. 5. 

K0
c(ω): Critical drive amplitude measured for various frequencies ω at V0 = 11 ER. For 

K0 > K0
c (light red region), the decay rate for both 2D drive trajectories increases 

dramatically, and we observe K0
c 2.4 at large ω. A simple relation captures this feature 

[red line].
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FIG. 6. Thermalization of the non-equilibrium population.
– The lattice is shaken for a few periods, then held static at thold = 0. There exist at thold = 0 a 

non-equilibrium population that thermalizes with the BEC in a few milliseconds, resulting in 

a clear decrease of the condensed fraction. The amplitude of this effect depends on the initial 

size of the non-equilibrium population. It is maximum if atoms are kicked to higher bands 

by an abrupt stop of the drive (blue). If no such population is created by the stopping of the 

drive, for example by choosing an end phase that minimizes the kick (red) or by rapidly 

ramping down the drive amplitude (green), no condensed fraction decay is observed.
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FIG. 7. Amplitude of the thermalization process.
– Difference between the condensed fraction at t = tend (thold = 0) and at t = tend + 6 ms (thold 

= 6 ms), as a function of the end drive phase, for a 2π × 2 kHz diagonal (2D) drive. For an 

abrupt stop (blue), a large population can be transfered out of the BEC for some end phases. 

This results in a large thermalization event and a clear drop of the condensed fraction. The 

effect is minimal when stopping the drive such that q(t) is a smooth function. If, however, 

the drive is stopped by ramping down the amplitude (green), no condensed fraction decay 

can be observed at any phase.
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FIG. 8. Typical decay plot.
Each data point (blue dots) is an experimental realization, where the condensed fraction is 

measured after a variable shake time (all else kept constant). The resulting decay curve is 

then fitted with an exponential function (red thick line). This particular example used K0 = 

2, ω/2π = 4 kHz and V0 = 11 ER. Each experimental rate in the manuscript is extracted from 

such a fit, and its error bar is given by ±1 standard deviation.
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FIG. 9. Decay rates in the critical region

– Zoomed in plot of data shown in figure 3, focusing on the region between K0
c and K0 = 2.5. 

The difference between circular and diagonal drive is clearly visible, with the circular drive 

rate as much as twice that of the diagonal drive rate.
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FIG. 10. Rate comparison: FBdG theory vs. BdG simulation.
Comparison between the dynamically-extracted instability rates from solving the exact BdG 

equations of motion for a finite number of drive cycles (blue stars), and the FBdG prediction 

(red dashed line). The three plots correspond to x-only (left), 2D circular (middle) and 2D 

diagonal (right) drives. The numerical simulations include a tube transverse degree of 

freedom. The parameters are g/J = 12, K0 = 1.25, and a momentum grid of 80 × 80 × 101 

modes in the x, y, and z-direction, respectively.
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FIG. 11. Rate comparison: TWA vs. BdG.
Left panel: Numerical simulation of the excitations growth using TWA (solid lines) and 

FBdG (dashed lines). The TWA curves change curvature beyond the regime of validity of 

BdG. Right panel: excitations [i.e. condensate depletion] growth rate against effective 

interaction strength g for FBdG theory (black), BdG short-time evolution (blue), TWA short-

time evolution (red) and TWA long-time evolution (green). The parameters are K0 = 2.1, ω/J 
= 20.0 and n0 = 50.0. We used a system of 80 × 80 × 101 momentum modes in the (x, y, z)-

direction, respectively. The TWA data is averaged over 50 independent realizations and the 

error bars (shaded area) are computed using a bootstrapping approach.
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