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In quantum gases with contact repulsion, the distribution of momenta of the atoms typically
decays as ∼ 1/|p|4 at large momentum p. Tan’s relation connects the amplitude of that 1/|p|4 tail
to the adiabatic derivative of the energy with respect to the gas’ coupling constant or scattering
length. Here it is shown that the relation breaks down in the one-dimensional Bose gas with contact
repulsion, for a peculiar class of stationary states. These states exist thanks to the infinite number of
conserved quantities in the system, and they are characterized by a rapidity distribution which itself
decreases as 1/|p|4. In the momentum distribution, that rapidity tail adds to the usual Tan contact
term. Remarkably, atom losses, which are ubiquitous in experiments, do produce such peculiar
states. The development of the tail of the rapidity distribution originates from the ghost singularity
of the wavefunction immediately after each loss event. This phenomenon is discussed for arbitrary
interaction strengths, and it is supported by exact calculations in the two asymptotic regimes of
infinite and weak repulsion.

Introduction. In a quantum gas, contact interactions
can impart large momenta to the particles: the singu-
larity of the many-body wavefunction when two parti-
cles are at the same position is reflected in the tails
of their momentum distribution w(p), which decay as
w(p) ∼ 1/|p|4. It contrasts with the gaussian decay that
would be expected from the Boltzmann distribution in
an ideal gas. The 1/|p|4 tails were noticed in hard-core
one-dimensional (1D) bosons by Minguzzi et al [1] (see
also Ref. [2]), then studied in 1D gases of arbitrary inter-
action strength by Olshanii and Dunjko [3], and by Tan
in three-dimensional (3D) fermionic gases [4–6]. [For a
general analysis in two and three dimensions for bosons,
fermions and mixtures, see Refs. [7, 8].] Remarkably,
the amplitude of the tail, C := limp→∞ |p|4w(p), is a
thermodynamic quantity [3, 5]. Tan’s ‘adiabatic sweep
theorem’ [5], or simply ‘Tan’s relation’, connects the am-
plitude C to the adiabatic derivative [9] of the energy
with respect to the two-body interaction parameter. For
Bose gases, Tan’s relation reads [8]

C = Cc, with Cc :=
m2

(2π~)d
2g2 ∂(E/V )

∂g
. (1)

Here m is the particles’ mass, E is the energy of the
gas, V is its volume, and g is the interaction coupling
constant [10]. The momentum distribution is normalized
as
´
ddpw(p) = N/V , where N is the total atom number

and d is the dimension of the system. The contact density
Cc is defined by the second equality of Eq. (1), for any
density matrix diagonal in the eigenbasis. Tan’s relation
C = Cc has been proved with wide generality and applies
to many states of the gas [11, 12].

Tails in the momentum distribution have been ob-
served experimentally in 3D fermionic gases and Tan’s
relation has been verified [13, 14]. It has also been ver-
ified, using spectroscopy, in 3D Bose gases [15]. On
the theory side, Tan’s relation and its extensions have
been thoroughly investigated [7, 8, 11, 12, 16–18]. Re-

cent works have focused on the 1D Bose gas [19–22], ex-
ploiting the relation between the contact density and the
zero-distance two-body correlation function (Eq. (3) be-
low).

Tan’s relation (1) is based on the assumption that the
tails of the momentum distribution are entirely due to
the contact two-body interaction. In this Letter, we point
out that this assumption is not always valid. We show
that, owing to its integrability, the 1D Bose gas with
contact interactions can have a contribution to its 1/|p|4
tail of different origin, so that C > Cc. This happens in a
peculiar class of stationary states, which we characterize.

Importantly, such peculiar stationary states are gen-
erated by atom losses. That makes them ubiquitous in
modern cold atoms experiments in 1D [23, 24], which
always suffer from losses [25–27]. We stress that those
states are stationary with respect to Hamiltonian dynam-
ics, so even if losses are no longer present at long times,
the breakdown of Tan’s relation persists. Therefore, an
important implication of our findings is that Tan’s rela-
tion will most probably be violated experimentally in 1D
Bose gases.

The essence of the breakdown of Tan’s relation for a
gas submitted to losses is as follows. Immediately after
a loss event, the wavefunction has a singularity at the
position of the lost atoms, in addition to the singular-
ities when two of the remaining particles meet. In the
momentum distribution, this additional singularity is re-
flected as a 1/p4 term which adds to the usual contact
term. If the gas were chaotic, then it would relax to a
new thermal equilibrium state. The effect on the mo-
mentum distribution would therefore be observable only
at short time after the loss, since thermal states belong
to the class of states that fulfill Tan’s relation. However,
the 1D Bose gas is not chaotic and the effect remains
present even after relaxation to a stationary state.

The results presented in this Letter are twofold. First,
we characterize the class of states for which Tan’s rela-
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tion is violated, and we provide a formula that supersedes
it (Eq. (4) below). Second, we demonstrate that losses
bring the gas to such a state. Our results on losses are
supported by exact analyses in the hard-core and quasi-
condensate regimes, for which we can exploit recent re-
sults of Refs. [28–30]. In both regimes, we find that the
amplitude of the tail of the momentum distribution C
becomes substantially larger than the value Cr predicted
by Tan’s relation.

The contact in the 1D Bose gas. We consider bosons
with contact repulsion in a periodic system of size L. The
Hamiltonian is (with [Ψ(z),Ψ+(z′)] = δ(z − z′))

H =

ˆ L

0

dzΨ+(z)

(
−~2∂2

z

2m
+
g

2
Ψ+(z)Ψ(z)

)
Ψ(z). (2)

We start by recalling the effects of the contact in-
teraction on the tails of the momentum distribution,
following Ref. [3]. Because of the contact interac-
tion, the many-body wavefunction ψ(z1, . . . , zN ) =
〈0|Ψ(z1) . . .Ψ(zN ) |ψ〉 has a cusp singularity whenever
two positions coincide [31]: ∂ziψ|

zi→z
−
j

− ∂ziψ|
zi→z

+
j

=

(mg/~2)ψ(. . . , zi = zj , . . . ). When one takes the Fourier
transform, those cusps become 1/p2 tails, which give a
∼ 1/p4 contribution to the momentum distribution after
taking the squared modulus of the wavefunction. When
this calculation is done carefully (as in Ref. [3]), it shows
that the contact interaction contributes to the tail of the
momentum distribution w(p) as Cc/p

4 with

Cc =
m2

2π~
g2n2g(2)(0). (3)

Here n = N/L is the atom density and g(j)(0) =
〈Ψ(z)+jΨ(z)j〉/nj , where j ∈ N, is the normalized zero-
distance j-body correlation function, independent of z
in a translation invariant system. Eq. (3) is an al-
ternative, more general, definition of the contact den-
sity Cc in 1D, which works for all states including non-
stationary ones. For stationary states (diagonal den-
sity matrices), it is equivalent to the one in Eq. (1).
Indeed, if |ψ〉 is an eigenstate, a straightforward ap-
plication of the Hellmann-Feynman theorem leads to
n2g(2)(0) = 2 〈ψ| ∂H/∂g |ψ〉 /L = 2∂(E/L)/∂g.

We now argue that there exist peculiar states, not con-
sidered in Ref. [3], where the equality C = Cc breaks
down.

The rapidity distribution, its tails, and tails of the mo-
mentum distribution. Because of the extensive number
of its conserved quantities, the 1D Bose gas typically
relaxes to a Generalized Gibbs Ensemble (see e.g. the
volume [32]) which is parametrised by its rapidity dis-
tribution [33–35]. The rapidities are conserved by the
Hamiltonian dynamics: they characterize the eigenstates
of the Hamiltonian (2), which take the form of Bethe
states [36, 37]. The rapidities are the asymptotic mo-
menta of the atoms if one lets the gas expand freely
in 1D [38–42]. They are conveniently thought of as the

momenta of quasiparticles with infinite lifetime [43, 44],
dubbed ‘Bethe quasiparticles’ in this Letter. After re-
laxation to a Generalized Gibbs Ensemble, expectation
values of local observables are functionals of the rapidity
distribution ρ(q) [33–35]. In the following, we normalize
the rapidity distribution as

´
dq ρ(q) = N/L.

We stress that the rapidity distribution is not equal
to the momentum distribution of the atoms. This is well
illustrated by the ground state of the system: its rapidity
distribution ρ(k) vanishes outside a finite interval [36,
37], while its momentum distribution w(p) presents the
aforementioned 1/p4 tails that extend to infinity [3].

Nevertheless, for large rapidities the momentum distri-
bution may reflect features of the rapidity distribution,
and vice-versa. To be more precise, let us imagine that
the rapidity distribution of the gas has tails decaying as
1/q4 (we will argue below that atom losses naturally pro-
duce such tails), and let Cr := limq→∞ q4ρ(q) be their
amplitude. Then we argue below that

C := lim
p→∞

p4w(p) = Cc + Cr. (4)

This formula, which generalizes Eq. (1), is our first main
result. In states where Cr = 0, which include single
eigenstates of H in finite size, thermal states, states
produced by merging two thermal clouds with different
temperatures [45], Tan’s relation (1) is recovered. On
the other hand, a non-vanishing Cr results in its break-
down. We note that Eq. (4) can also be applied to non-
stationary ones [46] if one uses Eq. (3) to define Cc.

Derivation of Eq. (4). We develop separate argu-
ments for the hard-core regime g → ∞ and for finite
g. When g → ∞, exact formulas are available [47–49]
for the correlation function g(1)(z) = 〈Ψ+(z)Ψ(0)〉 /n,
which allow us to infer its short-distance behavior. For a
rapidity distribution ρ(q) with a Cr/q

4 tail, we find [49]

g(1)(z) =
z→0

1−i q1

n
z−q2

n
z2+i

q3

n
z3+

π(Cr + Cc)

6~3n
|z|3+O(z4),

(5)
where qj = 1

~jj!

´
qjρ(q)dq. We arrive at this result

by studying a lattice regularization of the Bose gas, for
which we use an exact finite-distance formula for the
two-point correlation function, and then by taking the
continuum limit [49]. Eq. (5) generalizes known formu-
las for the short-z expansion of g(1)(z) in the g → ∞
limit [3, 48, 50] to the case of arbitrary rapidity distribu-
tions, including those with a Cr/q

4 tail. We then use the
fact that the Fourier transform of a cusp singularity in
|z|j has tails decaying as 1/pj+1. Evaluating that Fourier
transform, we obtain w(p) = n

2π~
´
eipz/~g(1)(z)dz '

|p|→∞
(Cr + Cp)/p4. Thus we arrive at Eq. (4).

For finite g and arbitrary rapidity distributions, a di-
rect computation of the momentum distribution or of its
Fourier transform g(1)(z) is much more difficult, even nu-
merically (see e.g. Refs. [41, 51]). Instead, we turn to
a different argument, which formalizes the physical in-
tuition that Bethe quasiparticles with large rapidities q
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must correspond to atoms with large momenta p ' q.
We give a brief sketch of the argument here, in order to
convey the main physical idea. Details are deferred to
the Supplemental Material [49].

Let us introduce a cutoff Λ, large enough so that
ρ(q) ' Cr/q

4 as soon as q > Λ. We split the rapid-
ity distribution into two terms ρ<Λ(q) = θ(Λ2 − q2)ρ(k)
and ρ>Λ(q) = θ(q2−Λ2)ρ(q), where θ(.) is the Heaviside
step function. Then one can think of the gas as a two-
component fluid. The idea is to take Λ large enough so
that Λ� max[mg~ , (Crξmg

~ )1/4], where ξ is the correlation
length of the gas.

We focus first on the component with rapidity distri-
bution ρ>Λ. Within a cell of size & ξ, large enough so
that the particles it contains are not correlated with the
rest of the system the typical number of rapidities in an
interval [q, q + dq] is ξρ>Λ(q)dq. This implies that the
typical spacing between neighbour rapidities is of order
∆q ∼ 1/(ξρ>Λ) ∼ 1/(ξCr/Λ

4) � mg/~. This ensures
that this fluid component behaves as an ideal Bose gas.
In particular, its momentum distribution equals its rapid-
ity distribution: w>Λ(p) ' ρ>Λ(p) ' θ(p2 − Λ2)Cr/p

4.

Moreover the condition Λ � max[mg~ , (Crξmg
~ )1/4] also

ensures that the two fluid components do not interact
between each other.

The other fluid component is characterized by a ra-
pidity distribution ρ<Λ with no tails, so it satisfies Tan’s
relation. Thus, its momentum distribution w<Λ(p) de-
cays as Cc/p

4 at large p.
The total momentum distribution w(p) of the gas is the

sum of the momentum distributions of both components,
which leads to Eq. (4).

Having established the key formula (4), we now turn
to the question: Is there a physical process that produces
such peculiar states with 1/q4 tails in their rapidity dis-
tribution? We are aware of only one such example in
the literature so far: a sudden quench of the interaction
strength g, which relaxes to a state with Cr > 0 [52]. In
the rest of this Letter we argue that atom losses, which
are ubiquitous in experiments, always generate these pe-
culiar states.

Losses and 1/q4 tails of the rapidity distribution. We
consider the general case of local K-body losses, where
K = 1, 2, 3, . . . is the number of atoms lost in each loss
event. Depending on the experiment, losses are typi-
cally dominated by K = 1, K = 2 [53, 54] or K = 3
processes [26, 27], but it is convenient to keep K ar-
bitrary. The atom density then decays as dn/dt =
−KGg(K)(0)nK , where G is a constant with units of

lengthK−1.time−1 that characterizes the loss rate. Fol-
lowing Ref. [28] (see also Refs. [55, 56]), we assume that
the loss rate GnK−1 is much smaller than the relaxation
time, so that the gas relaxes to a Generalized Gibbs En-
semble after each loss event. This allows to represent the
evolution of the gas under losses by its time-dependent
rapidity distribution [28].

Let us assume that, at t = 0 the gas’ rapidity distribu-
tion has no 1/q4 tails, i.e. Cr(t = 0) = 0. For instance,

the gas could be in a thermal state. We want to show
that at, t = 0, dCr/dt > 0, implying that the rapidity
distribution will develop non-vanishing 1/q4 tails.

To do this, we elaborate on the microscopic mech-
anism presented in the introduction. Consider the
many-body wavefunction ψt=t−l

(z1, . . . , zN ) just be-

fore a loss event occuring at time tl and position
zl. Right after the loss, the wavefunction of the
remaining N − K atoms is ψ̃t=t+l

(z1, . . . , zN−K) =

LK/2ψt=t−l
(z1, . . . , zN−K , zN−K+1 = zl, . . . , zN = zl).

As a reminiscence of its cusp singularities before the
loss, the wavefunction ψ̃t=t+l

still has a cusp at zj = zl

(j = 1, . . . , N −K). Following the calculation of Ref. [3],
we find that it results in a contribution C(1 loss)/p4 to the
momentum distribution, with the amplitude

C(1 loss) = ~3

2πL
K−1(N −K)

´
dz2 . . . dzN−K

|∂z1ψ|
z1→z

+
l

− ∂z1ψ|
z1→z

−
l

|2, (6)

where the variables zN−K+1, . . . , zN in the integrand are
taken equal to zl. The boundary condition imposed by
the contact interaction gives ∂z1ψ|

z1→z
−
l

− ∂z1ψ|
z1→z

+
l

=

Kmg/~2 ψ(z1 = zl, z2, . . . , zN−K+1 = zl, . . . zN = zl).
Then, using the expression of g(K+1)(0) in first quanti-
zation, we get

C(1 loss) =
m2

2π~
nK2

L
g2g(K+1)(0). (7)

Here we have used the fact that, as N →∞, N −K ' N
and N . . . (N −K) ' NK+1.

Next, we rely on formula (4), and argue that the con-
tribution (7) of one loss event to the momentum distribu-
tion translates into the same contribution to the rapidity
distribution. Indeed, the contribution (7) is not taken
into account in the contact density Cc at time t = t+l ,
therefore according to formula (4) it must appear in the
tail of the rapidity distribution:

Cr|
t=t

+
l

− Cr|
t=t
−
l

= C(1 loss). (8)

Like ρ(k), Cr is conserved by the Hamiltonian dynamics,
so this increase of Cr remains after relaxation to a Gen-
eralized Gibbs Ensemble. Finally, we multiply this result
by LGnKg(K)(0)dt, the number of loss events occuring
in the system during a short time interval dt. This leads
to the initial growth rate

dCr

dt
(t = 0) =

m2

2π~
GnK+1K2g2g(K)(0)g(K+1)(0). (9)

This equation is the second main formula of this Let-
ter. It shows that dCr/dt|t=0

> 0, such that Cr becomes
non-zero. Together with Eq. (4), it implies that the mo-
mentum distribution develops tails that are larger than
what is expected from Tan’s relation.

We stress that Eq. (9) gives only the initial growth rate
of the tail of the rapidity distribution. At later times,
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its evolution will also involve additional damping effects.
Indeed, under atom losses the gas ultimately evolves to
the vacuum, therefore the whole rapidity distribution —
including its tails— will go to zero at very long times.
The calculation of the damping of Cr at longer times is
not obvious. Below we obtain further results in the hard-
core and quasicondensate regimes.

Exact results in the hard-core regime. In the hard-
core regime (g →∞), only one-body losses are relevant,
since g(K)(0) = 0 for K > 1. Thus, in this paragraph
we fix K = 1. The evolution of the rapidity distribu-
tion ρ(t, q) under losses has been computed recently in
Ref. [28], for an arbitrary initial distribution ρ(t = 0, q),
see in particular Eq. (14) in that reference. Here we ex-
ploit that general result to study the evolution of the 1/q4

tail.
Expanding Eq. (14) of Ref. [28] for large q, we find that

ρ(t, q) = Cr(t)/q
4 + o(1/q4), with

Cr(t) =
4~m
π

[n(0)e(0)− j(0)2/(2m)] e−Gt(1− e−Gt).
(10)

Here j(t) =
´
q ρ(t, q)dq and e(t) =

´
q2/(2m) ρ(t, q)dq

are the momentum and energy density respectively [57].
The right hand side of Eq. (10) involves these quanti-
ties at time t = 0. Using the fact that, under losses,
the particle, momentum, and energy densities evolve as
n(t) = n(0)e−Gt, j(t) = j(0)e−Gt, e(t) = e(0)e−Gt re-
spectively in the g → ∞ limit [49], the right hand side
can also be written as 4~m

π [n(t)e(t)−j(t)2/(2m)](eGt−1).
We note that formula (10) provides a non-trivial

check of our general prediction (9) for the initial growth
rate: using the standard identity limg→∞ n2g2g(2)(0) =
8~2

m [ne − j2/(2m)] [49], one sees that Eqs. (9) and (10)
agree.

Importantly, Eq. (10) also allows us to compare the
amplitude Cr(t) with the contact density at time t. Using
again the standard identity above, together with Eq. (3),
we find

Cr(t)/Cc(t) = exp(Gt)− 1. (11)

We see that the ratio of the amplitude Cr to the contact
density Cc grows exponentially as time increases. This is
our third main result: not only does the term Cr/p

4 con-
tribute to the momentum distribution, it can also become
dominant compared to the contact term. Numerical cal-
culations of w(p) [49] show that, for an initial degenerate
gas, w(p) ' (Cr + Cc)/p

4 as soon as p & 7~n0.
We now investigate the ratio Cr(t)/Cc(t) for weak re-

pulsion.

Results for the quasicondensate. In the quasiconden-
sate regime, correlations between atoms are weak and
g(j)(0) ' 1 for all j. An effective description of the
gas is obtained by a phase-density representation [58]:
in Eq. (2), one writes the atomic field Ψ as

√
n+ δneiθ

where θ and δn are phase and density fluctuation fields
(with δn, ∂θ/∂z � n), which satisfy the commutation

relation [δn(z), θ(z′)] = iδ(z − z′). The Bogoliubov ap-
proximation then leads to a collection of independent
harmonic modes. The Hamiltonan for each mode is of
the form Hk = εkb

+
k bk (up to additive constant), where

b+k (k ∈ 2π~
L Z) is a linear combination of the Fourier

modes δnk and θk [49, 58] and εq =
√

k2

2m ( k
2

2m + 2gn).

The Bogoliubov creation/annihilation operators satisfy
[bk, b

+
k′ ] = δk,k′ , and the occupation of each mode is

αk =
〈
b+k bk

〉
.

The effect of slow losses on the Bogoliubov mode oc-
cupations αk has been analyzed in Refs. [29, 30, 59, 60].
In Ref. [29], the effect of K-body losses on αk was com-
puted for small k. In Refs. [30, 59], the evolution of αk
was studied for any k, but only K = 1 was considered.
Combining these results, we are able to compute dαk/dt
for any K and k [49]. The result reads

dαk
dt

= K2GnK−1

(
−αk −

1

2
+

1

4

[
εk

k2/(2m)
+
k2/(2m)

εk

])
.

(12)

The precise link between Bogoliubov excitations and
Bethe quasiparticles is not obvious. However, it has been
discussed by Lieb [61] (see also Ref. [62]), who identifies,
for states close to the ground state, the large-k Bogoli-
ubov excitations to Bethe quasiparticles with rapidities
q ' k. Therefore a Cr/q

4 tail in the rapidity distribution
translates to Bogoliubov mode occupations decaying as
αk ' 2π~ Cr/k

4 for large k [63]. [We have checked [49]
that this identification q ' k, together with the known
exact expression for g(1)(z) [58], is compatible with our
Eq. (4) within the framework of Bogoliubov theory, as it
should.]

Using the large-k expansion of εk in Eq. (12), we find
that the amplitude of the 1/q4 tails of ρ(q) evolves ac-
cording to

dCr
dt

= K2GnK−1

(
−Cr +

m2

2π~
g2n2

)
. (13)

This differential equation can be easily solved [49], which
allows us to obtain Cr(t) at all times. In particular, at
long times, we find that the ratio of Cr(t) to the contact

density Cc(t) = m2

2π~g
2n(t)2 (Eq. (3), with g(j)(0) = 1)

behaves as

Cr(t)

Cc(t)
=

t→∞


exp(Gt) if K = 1,

2 log(GnK−1
0 t) if K = 2,

K/(K − 2) if K ≥ 3.
(14)

This is the fourth main result of this Letter. For K = 1,
one finds the same behavior as in the hard-core regime.
For K ≥ 3, the ratio takes an asymptotic value. For
instance, the ratio Cr/Cc goes to 3 for three-body losses,
so the tail of the momentum distribution C/p4 is four
times larger than its value predicted by Tan’s relation
(1).
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Experimental prospects. An experimental test of the
predictions of this paper is within reach in current cold
atom setups. There exist different ways of measuring the
momentum distribution of 1D gases [64–67]. Because of
the small amplitude of the tails, such a measurement re-
quires a high dynamical range, which can be achieved
for instance using metastable atoms [68]. Usually, gases
in experiments are non-uniform. Within a local density
approximation, our results are straightforwardly general-
ized to include a trapping potential [49].

Conclusion. On the theory side, our results open sev-
eral research lines. First, for quantitative comparison
with experiment, one should compute the evolution of
the rapidity tails in intermediate regimes of the 1D gas.
For this, one can in principle rely on the method pre-
sented in Ref. [28], although an improvement of the nu-
merical efficiency of that method would be required (see

also the recent analytical progress in Ref. [69]). Second,
our results can probably be extended to integrable 1D
Fermi gases [70]. Third, it would be interesting to in-
vestigate the effects of losses in higher dimension. The
singularity of the wavefunction at the position of the lost
atoms is also expected to have a effect that remains to be
elucidated. Finally, it would be interesting to study loss
processes that are not purely local or not purely Marko-
vian. How would this impact the development of the
momentum tails?
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Applied Physics B 77, 765 (2003).

[54] T. Kinoshita, T. Wenger, and D. S. Weiss, Physical re-
view letters 95, 190406 (2005).
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R. Bouganne, J. Beugnon, F. Gerbier, and L. Mazza,
arXiv preprint arXiv:2011.04318 (2020).

[57] n0e0 − j20/(2m) = n0ei, where ei is the energy density of
the gas in the reference frame where the center of mass
is at rest.

[58] C. Mora and Y. Castin, Phys. Rev. A 67, 053615 (2003).
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