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Abstract: Gas-filled multipass cells are an appealing alternative to capillaries to implement
nonlinear temporal compression of high energy femtosecond lasers. Here, we provide an analytic
expression for stationary beam coupling to multipass cells that takes into account nonlinear
propagation. This allows a constant beam size on the mirrors and at the cell waist, thereby making
the optical design more accurate, for example to avoid optical damage or significant ionization.
The analysis is validated using spatio-temporal numerical simulations of the propagation in a
near-concentric configuration. This is particularly important for multipass cells that are operated
in a highly nonlinear regime, which is the current trend since it allows a lower number of
roundtrips, relaxing the constraint on mirror coatings performance.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Nonlinear temporal compression [1] is an important technique that allows a lot of flexibility in
ultrafast laser design. As an example, it can be used to turn efficient and robust ytterbium-doped
materials-based lasers that typically emit pulses of a few hundred of femtosecond into few-cycle
sources [2]. When the energy of the pulses to be compressed is above approximately 100 µJ, the
nonlinear media of choice used in compression setups are rare gases. Glass capillaries filled with
noble gases have been used for 25 years for that purpose, since they allow both beam confinement
and large interaction lengths. An alternative solution is to use a gas-filled multipass cell (MPC).
These systems have been proposed recently [3,4], and since then a number of experiments have
shown excellent performances in a wide variety of input pulse duration, energy, and average
power [5–11], particularly in terms of energy transmission.

One of the limits of energy scaling in gas-filled MPCs is that the peak power must be maintained
below the critical power of the gas to avoid beam collapse. For any input pulse characteristics,
this condition defines a maximum pressure for the particular gas used to fill the MPC, therefore
limiting the B-integral per roundtrip. Experimental demonstrations tend to approach this limit,
since it was observed that the spatio-spectral homogeneity remains satisfactory even for peak
powers above half the critical power [12]. Operating MPCs at high nonlinearity level allows a
lower number of roundtrips for a given compression ratio, thereby relaxing constraints on the
mirror coatings both in terms of reflectivity and dispersion.

Input beam coupling in gas-filled MPCs is typically matched to the stationary Gaussian beam
[13], to ensure a constant beam size evolution from one roundtrip to the next. This is particularly
important to avoid damage on the mirrors or excess ionization at the MPC waist. Up to now,
the stationary Gaussian beam target used for beam matching has been obtained ignoring the
contribution of nonlinear refraction in the gas, which causes oscillations of the beam size over
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the roundtrips upon nonlinear propagation [14]. These oscillations are more pronounced at high
nonlinearity, calling for an improved input beam coupling analysis. Although beam matching
can be fine-tuned during experiments, starting from the linear stationary beam, to obtain better
homogeneity of the beam sizes at the mirrors, an improved understanding of the impact of
nonlinearity on the caustic would help to guide this delicate procedure. Here we show that, in the
aberrationless approximation, there exists a stationary Gaussian beam even in the presence of
the distributed nonlinear refraction of the gas. We provide an analytical formula for optimized
nonlinear beam matching to MPCs. We verify with spatio-temporal numerical simulations of
the propagation that this nonlinear beam matching indeed results in stationary propagation in
a highly nonlinear configuration. In particular, a near concentric MPC is considered, since it
typically allows the most compact design at any given input energy level. Finally, a procedure
to achieve this nonlinear beam matching experimentally is outlined. We believe that improved
understanding and description of the spatial aspects of nonlinear propagation in these MPCs will
allow the expansion of their use, in particular for high energy ultrafast laser systems.

2. Properties of the nonlinearly matched beam

Propagation of a continuous wave (CW) Gaussian beam in a homogeneous nonlinear medium
with linear refractive index n0 and nonlinear refractive index n2 was shown to satisfy modified
laws with respect to the linear case [15]:
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where w is the beam radius at 1/e, R is the radius of curvature of the wavefront, z is the propagation
distance, w0 is the beam radius at its waist, zR = πw2

0/λ is the linear Rayleigh range, λ and λ0
are the central wavelength in the medium and in vacuum respectively, and σ = 1 − P/Pcrit is a
nonlinear correction factor that depends on the ratio of the beam power P to the critical power for
self-focusing Pcrit = 3.77λ2

0/8πn0n2 [16]. We consider propagation of such a beam in a nonlinear
MPC as depicted in Fig. 1. To obtain the waist w0 of the stationary beam in the nonlinear regime,
we fix the radius of curvature of the nonlinear beam to be equal to the mirror radius of curvature
at the mirror location. This yields
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where RM is the radius of curvature of the mirrors, and L is the MPC length. As a result of this
modified size and propagation characteristics, and following the same reasoning as in [4], the
beam-averaged B-integral accumulated over a roundtrip is
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Because the stationary nonlinear beam is both smaller and has a lower divergence than its
linear counterpart, we note that the B-integral per pass increases by a factor 1/

√
σ compared to

the linear propagation approximation. These expressions are valid for a CW beam, and must be
adapted to the case of optical pulses.
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Fig. 1. MPC geometry.

To do this, we use an approach that is equivalent to the concept of effective area in guided-wave
nonlinear optics [17]. For a given temporal pulse shape P(t) and energy E = ∫ P(t)dt, we look for
the rectangular-shaped pulse that accumulates the same average nonlinear phase dφNL in the time
domain over a distance dz:

dφNL =
∫ P(t)dφNL(t)dt

∫ P(t)dt
, (5)

where dφNL(t) = γP(t)dz is the nonlinear phase accumulated at time t, and γ is the local nonlinear
coefficient. This results in the following definition for the effective pulsewidth:

∆teff =
(∫ P(t)dt)2

∫ P2(t)dt
, (6)

with a corresponding effective peak power Peff = E/∆teff . For a Gaussian pulse with full width
at half maximum in power ∆tFWHM and peak power Ppeak, the effective pulsewidth and power are
given by

∆teff =

√︃
π

2 ln(2)
∆tFWHM Peff =

Ppeak
√

2
. (7)

Just like the effective area allows to take into account spatially averaged nonlinear effects in the
time domain, the effective power defined in Eq. (7) allows us to take into account time-averaged
nonlinear effects in the spatial domain. Note that these definitions of the effective duration and
power are valid for third-order nonlinear effects that can be described as an intensity-dependent
index. If we make the assumption that the temporal profile does not change upon propagation,
which is verified if dispersion has negligible impact, then beam propagation can be accurately
described using the modified Gaussian beam defined by Eqs. (1) and (2), with a nonlinear
correction term given by σ = 1 − Peff /Pcrit. This time-averaged correction term must also be
used in Eqs. (3) and (4) to yield the stationary beam waist and B-integral in the MPC. Note that
in Eq. (4), the effective power must be used to compute σ, but the actual peak power must be
used in the rest of the expression.

3. Validation with numerical simulations

We now use these results in numerical simulations to assess their validity. Nonlinear propagation
is modelled by solving the spatio-temporal nonlinear envelope equation [18], taking into account
diffraction, dispersion, and Kerr effects including self-phase modulation, self-focusing, and
self-steepening. It is implemented using a split-step Fourier approach [17]. The pulsed beam at a
given longitudinal position is described by a two-dimensional field which is a function of time
and the radial coordinate, assuming cylindrical symmetry. Transition from the direct space to the
Fourier space is achieved using the fast Fourier transform in time and the quasi-discrete Hankel
transform [19] in space. The space-time grid for the simulations presented in next sections is as
follows: 4 ps time window with 512 points, 7 mm maximum radius for the transverse dimension
with 512 points, and a longitudinal step of 2.5 mm.
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We choose to test the validity of the stationary nonlinear beam matching using simulation
parameters approximately matching those of the experimental implementation described in [11],
done in a highly nonlinear regime. Perfect Gaussian pulses with a central wavelength of 1030 nm,
duration 700 fs, and energy 7 mJ are launched in a MPC filled with 1 bar of argon, corresponding
to a nonlinear parameter σ of 0.6. The dispersion and nonlinear index of argon (n2=0.97×10−23

m2/W at 1 bar) are taken from [20,21]. The MPC mirrors have a radius of curvature of 1 m, a
reflection coefficient of 99.5%, and are separated by a length of 1.995 m, slightly detuned from
the concentric arrangement into the stability zone. In the linear propagation approximation, this
results in a MPC waist of 131 µm, and a beam radius of 2.5 mm on the mirrors. The nonlinear
waist given by Eq. (3) is 115 µm.

The evolution of the time-averaged RMS beam radius is plotted in Fig. 2 as a function of
the number of passes through the MPC, both on the mirrors and at the MPC waist. Three
situations are considered: purely linear propagation as a reference, nonlinear propagation if the
beam is launched using linear beam matching, and nonlinear propagation using the nonlinear
beam matching procedure described above. When linear beam matching is used, we can clearly
observe that nonlinear refraction focuses the beam to a smaller waist, and that the caustic’s
periodicity is perturbed, causing a progressive decrease of the beam size on the mirrors and an
increase at the MPC waist. For this particular case, the decrease in beam size from 2.5 to 1.9
mm corresponds to a fluence multiplied by 1.7, which could cause mirror damage depending
on the experimental safety margin. At the waist, the beam radius varies in the range 103–133
µm, which again corresponds to a variation of intensity of a factor 1.7. In contrast, using the
nonlinear beam matching condition leads to a stable beam size both at the mirrors and at the
focus, with values of 2.18± 0.02 mm and 117± 1 µm respectively.

Looking in more details, Fig. 3 shows the peak intensity at the MPC waist obtained numerically,
which is the quantity that ultimately matters for the ionization limit. Although the beam radius
shown in Fig. 2 for the nonlinear beam matching case is almost constant upon propagation, we
observe that the peak intensity varies in the range 43 - 64 TW/cm2, indicating that aberrations
lead to beam reshaping away from the perfect Gaussian beam. Still, this intensity variation is
much smaller than in the linearly beam matched case, where the intensity is changed by more
than a factor 2, over the range 36 - 81 TW/cm2.

The numerically calculated on-axis B-integral for the first roundtrip is shown in Fig. 4 in the
linear and nonlinear beam matching cases. The beam matching does not change the B-integral
significantly. This can be understood as follows: it is easy to show that the B-integral accumulated
by a Gaussian beam over propagation from minus infinity to plus infinity does not depend on the
beam waist [4]. This remains approximately true if the B-integral is computed over a path that
includes the beam waist and is much greater than the Rayleigh range, which is the case in a near
concentric MPC. This also remains true for the modified nonlinear Gaussian beams used in this
paper, which explains that the B-integral per roundtrip is hardly modified, even when the beam
sizes at the waist and on the mirrors evolve from one roundtrip to the next.

After a roundtrip, the accumulated B-integral reaches a value of 11.2 rad, corresponding to
a beam-averaged value of 5.6 rad for a Gaussian beam, to be compared to the analytical value
predicted by Eq. (4) of 4.3 rad, and to the linear propagation approximation (σ=1) value of 3.3
rad. The reason for the discrepancy between the numerically obtained result and the analytical
estimate can be traced back to the higher-order spatial phase (aberrations) imparted by the Kerr
lens, that leads to a smaller effective area in the vicinity of the beam waist. This is in line with
the observations made on the evolution of peak intensity.

Note that the present analysis entirely neglects ionization and plasma–related effects, which are
typically avoided in gas-filled MPCs. Indeed, since these phenomena are much more nonlinear
than the Kerr effect, their effect result in complete beam breakdown above a threshold that
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Fig. 2. Time-averaged RMS beam radius sampled at the MPC mirrors (top) and at the MPC
center (bottom) as a function of pass number in the MPC in three different cases: linear
refers to purely linear beam matching and propagation, LBM refers to linear beam matching
and nonlinear propagation, NLBM to nonlinear beam matching and propagation.

Fig. 3. Peak intensity at the MPC center as a function of pass number in two cases:
LBM refers to linear beam matching and nonlinear propagation, NLBM to nonlinear beam
matching and propagation.
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Fig. 4. On-axis B-integral accumulated over the first roundtrip in the MPC. LBM refers to
linear beam matching, NLBM to nonlinear beam matching.

corresponds to the onset of significant ionization rate [7], depending on the ionization potential
for the considered rare gas.

4. Experimental beam matching procedure

We now discuss how to use this result in practice. Propagation in a gas-filled MPC is modified
by nonlinear refraction in the gas as soon as the beam goes through the window that is used to
seal the cell. However, mode matching to the cell is often achieved at atmospheric air pressure
and at reduced power to facilitate experimental adjustments and diagnostics, resulting in an
essentially linear propagation. This can be taken into account using the following procedure.
One of the result concerning the nonlinear Gaussian beam described in Eqs. (1) and (2) is that its
propagation through an optical system can be easily computed using the standard ABCD matrix
method, applied to a modified generalized reduced radius of curvature [15] defined as

1ˆ︂qNL
=

n0
R
+ i

√
σ
λ0

πw2 . (8)

In order to determine what the optimal beam waist and location are in the absence of nonlinear
gas, one should therefore start from the MPC center with the optimal nonlinear beam size given
by Eq. (3), and propagate the beam back through the optical system to the entrance window
using the nonlinear ˆ︂qNL parameter corresponding to the expected peak power and gas nature and
pressure. From the entrance window, the beam can then be linearly propagated (σ= 1) towards
the MPC center to reveal the target beam waist and position to be used during the beam matching
procedure.

As an example, let us consider the case of the MPC described in section 3. If we assume
that, from the input window, the beam first propagates over 1 m, then is focused into the MPC
waist by a f=1 m lens or mirror, the waist radius that should be aimed for in the absence of gas
is 150 µm, in order to reach the optimal waist size of 115 µm in the presence of gas. In this
configuration, the waist position is unchanged by nonlinear refraction, but it is not always the case.
This illustrates the practical importance of the present study for experimental implementations of
highly nonlinear MPCs.

5. Conclusion

As a conclusion, we derive the stationary condition for a symmetric MPC in the nonlinear
aberrationless Gaussian beam approximation. The notion of effective power allows to easily
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account for the pulsed nature of beams. This analysis is checked using spatio-temporal numerical
simulations, validating the fact that nonlinear refraction should be taken into account to optimize
coupling in highly nonlinear MPCs.

Although we have restricted the analysis to gas-filled cells, nonlinear propagation using ABCD
matrices and the ˆ︂qNL parameter could be used to perform the same analysis in MPCs that include
plates of bulk material. This formalism can also be used to guide experimental design of optical
systems for input and output coupling of gas-filled capillary setups. Overall, we believe that these
results will be helpful in designing future high energy MPCs for temporal compression of high
energy laser sources.
Funding. Agence Nationale de la Recherche (ANR-10-LABX-0039-PALM, ANR-16-CE30-0027-01-HELLIX, ANR-
19-CE30-0001-02-MIRTHYX).
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