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A Speed Test for Ripples in a
Quantum System
Settling a theoretical debate, three studies show that there is a maximum
speed at which a physical effect can travel through systems of
long-range-interacting particles.

ByMarc Cheneau and Laurent Sanchez-Palencia

A re there limits on how fast a physical effect can
propagate in a system? The answer to this fundamental
question has far-reaching consequences for practically

any dynamic systemwe want to use or understand, frommedia
for sending long-distance messages to extended bodies
approaching thermal equilibrium. In a pioneering 1972 study,
Elliott Lieb and Derek Robinson showed that the speed at which
a physical effect could travel through a collection of interacting
particles always has an upper limit [1]. The existence of the
Lieb-Robinson bound, however, assumes that the particles are
locally interacting, whereas many forms of “complex matter” of
interest today involve long-range interactions. In a trio of
papers, researchers now establish a bound for many long-range
systems as well [2–4]. The findings settle a recent debate over if
and when such bounds exist, and they may have implications
for the choice of platform for quantum computation and other
quantum technologies.

Youmay have raised an eyebrow upon reading that the
Lieb-Robinson bound was considered a discovery. After all,
special relativity says that the speed of light is the ultimate limit
on how fast a signal can travel, and this limit is built into the
quantum field theory that describes the interactions between
elementary particles. But researchers are also interested in
whether an intrinsic limit on the speed of a physical effect exists
simply by virtue of the way a system’s particles interact. This
limit determines, for instance, how quickly a jolt to an atom in a
solid will influence a distant atom’s behavior.

When Lieb and Robinson explored this bound, they used a
lattice of spins as a generic model of matter on amicroscopic

scale, where quantummechanics prevails. The interactions in
their model refer, for instance, to the energy cost of two spins
pointing in opposite directions. The interactions are also
short-ranged because the energy cost falls off exponentially
with the distance between two spins, as exp(−x/d). Lieb and
Robinson defined their “physical effect” as a correlation
between two distant spins. Consider, for instance, a lattice with
all spins initially aligned upwards (Fig. 1). Now imagine flipping
one spin at x = 0. It will mainly stir its closest neighbors, which
will stir theirs, and so on, and it will take some time t before a
spin at a distant point x feels the initial flip. Lieb and Robinson
quantified this correlation onset between distant spins with a
so-called commutator, a mathematical object involving the
quantum spin operator acting at x = 0 and t = 0 and the
quantum spin operator acting at x and t. They showed that
there is always a velocity v such that the “norm” of this
commutator is negligibly small when x > vt. In modern
language, physicists would say the speed of a physical effect is
bound to an effective light cone (Fig. 1)—akin to the causal light
cone of relativity. The slope of this cone is v, and the fact that
it’s constant means that the bound doesn’t speed up or slow
down with time.

Compared to the spin system Lieb and Robinson studied, many
quantum systems of interest today involve longer-ranged
interactions, such as arrays of Rydberg atoms, trapped ions and
molecules, and defects in solids. The availability of such
systems has stimulated researchers to extend Lieb and
Robinson’s work to systems with power-law interactions,
decaying as 1/xα. Various studies found bounds that, in
principle, allow the propagation of a physical effect at a velocity
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Figure 1: A flipped spin in a chain of interacting spins (bottom) will
eventually stir its neighbors (middle and top). New studies of spin
systems [2–4] show that, for long-range interactions decaying
sufficiently fast, the speed of this physical effect has a fixed upper
limit—meaning it lies in an effective light cone in space and time
(solid line). For longer ranged interactions, however, this light cone
could, in principle, be flared (with a changing speed bound, as
shown with the dotted line). Or, it might not exist at all.
Credit: APS/Alan Stonebraker

that increases over time—implying a “flared” light cone [5–7].
But other analyses, relying on numerical calculations or
analytical calculations with simplified models, suggested that a
linear light cone would exist provided that α is sufficiently large
[6, 8, 9]. With mathematical proofs, the three new studies look
at a variety of long-range-interacting systems and determine
that there is a critical value of α that separates bounded and
unbounded dynamics. And they find this critical value as well.

The first study was reported in a 2019 paper by Chi-Fang Chen
and Andrew Lucas, then both at Stanford University. The two
considered a generic 1D spin systemwith power-law
interactions. And they determined a bound to the usual
commutator norm by calculating the magnitude of its largest
eigenvalue. For α > 3, they found that the time for a signal to

reach a certain distance is at least proportional to the distance,
hence establishing a light cone with straight sides.

A more recent paper from Tomotaka Kuwahara of the RIKEN
Center for Advanced Intelligence Project and Keiji Saito of Keio
University, both in Japan, generalizes Chen and Lucas’ theorem
by extending it to dimension D > 1. They find a straight cone
for α > 2D + 1. Moreover, they show that 2D + 1 is a tight
threshold by demonstrating a scenario that violates the light
cone for α < 2D + 1.

Finally, the third paper, fromMinh Tran of the Joint Quantum
Institute in Maryland, in collaboration with Lucas, Chen, and
other researchers, uses different definitions of the norm to
establish a new hierarchy of light cones. The most generally
defined norm holds in any system and for any signal when
α > 2D + 1. But in some specific cases a light cone exists as
soon as α > 3D/2 + 1 or even α > D + 1 for noninteracting
particles. The existence of these tighter bounds sheds light on
experimental and numerical observations where the
propagation of a signal in a system seemed to be bounded by a
light cone even when the particle interactions decayed slowly.

The three studies leave us with the picture that, as long as
interactions decay fast enough, the speed of physical effects has
an upper bound. This result is disappointing to anyone who
dreams of using quantummechanics to speed up the
communication between two parts. But the limit could be an
advantage. It means, for example, that a quantummemory
should be safe from the perturbations of the outside world for a
certain period of time. It also says that simulating some
quantum systems on a classical computer might be doable
because one doesn’t have to account for the influence of every
distant particle. At the same time, the new studies help us
better understand the properties of complex quantummatter
and the systems experimentalists use to simulate them [10, 11].

Finally, we should remember that these works say how fast
information can propagate, not how fast it does propagate. To
answer this more practical question, one needs to know the
microscopic mechanism driving the propagation, which
involves the system’s elementary excitations [12].

This research is published in Physical Review Letters and Physical
Review X.
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