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5Heidelberg University, Kirchhoff-Institut für Physik,
Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
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We report on an extensive study of the elastic scattering time τs of matter-waves in optical disor-
dered potentials. Using direct experimental measurements, numerical simulations and comparison
with first-order Born approximation based on the knowledge of the disorder properties, we explore
the behavior of τs over more than three orders of magnitude, spanning from the weak to the strong
scattering regime. We study in detail the location of the crossover and, as a main result, we reveal
the strong influence of the disorder statistics, especially on the relevance of the widely used Ioffe-
Regel-like criterion kls ∼ 1. While it is found to be relevant for Gaussian-distributed disordered
potentials, we observe significant deviations for laser speckle disorders that are commonly used
with ultracold atoms. Our results are crucial for connecting experimental investigation of complex
transport phenomena, such as Anderson localization, to microscopic theories.

Introduction.— The elastic scattering time τs, i.e., the
mean time between two successive scattering events, is a
fundamental time scale to describe wave propagation in
disorder, and is thus at the heart of theoretical descrip-
tion of a wide class of physical systems, from light in the
atmosphere or in biological tissues to electrons in solid-
state systems [1, 2]. Furthermore, τs is routinely used to
characterize the scattering strength via the dimensionless
quantity kls (k: wave number; ls = vτs: mean free path,
with v the group velocity), which quantifies the number
of oscillations of the wave between two scattering events.
In this respect, the criterion kls ∼ 1 is widely accepted to
set the limit between the weak scattering regime, where
perturbative treatments apply, and the strong scattering
regime. It coincides with the Ioffe-Regel criterion asso-
ciated with Anderson localization for point-like scatter-
ers [3].

Since τs is related to dephasing and not directly to
transport properties, its direct determination is rather
demanding [4]. So far various measurement methods
have been developed, from Shubnikov-de Haas oscil-
lations of the magneto-conductivity in electronics sys-
tems [5–8], to ballistic transmission [9, 10], microscopy
techniques [11–13], and intensity or phase correlations
[14–19] for classical waves. However, the direct compar-
ison between experimental determinations and ab-initio
calculations have been scarce (see, e.g., [9]) and, to our
knowledge, a quantitative investigation of the relevance
of the criterion kls ∼ 1 is still lacking. Atomic matter
waves in optical disordered potentials offer a controllable
platform to investigate the behavior of τs with respect to

the microscopic details of the disorder. Numerous theo-
retical predictions exist [20–30], yielding in particular to
the derivation of an alternative condition to the kls ∼ 1
criterion [31] in Ref. 21, rendering a precise investigation
highly desirable.
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FIG. 1. Elastic scattering and Born approximation.
(a) Scattering of a matter-wave by a laser speckle disordered
potential of typical correlation length σ. During a scattering
event, which happens on the characteristic time τs, a mo-
mentum kdis is transferred to the initial momentum ki. In
the Born approximation, the final momentum k′ = ki + kdis

lies on the elastic scattering ring (dotted circle). For positive
atom-light detuning ∆ > 0, the laser speckle potential is re-
pulsive. Inset : for ∆ < 0, it is attractive, having identical
spatial properties but opposite amplitude distribution. (b) Il-
lustrations of the 2D-momentum distributions n(k, t) after a
typical time τs (1st row: side view, 2nd row: top view) for
the isotropic (ki � σ−1) and forward (ki � σ−1) scattering
regimes.
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In this letter, we report direct measurements of the
elastic scattering time τs for ultracold atoms propagating
in quasi two-dimensional laser speckle disordered poten-
tial. The scattering time is directly measured by monitor-
ing the time evolution of the momentum distribution for a
wave packet having a well defined initial momentum, and
the results are compared to numerical simulations, yield-
ing to an excellent agreement. The simulations are also
used to extend our investigation to the case of a Gaussian
disorder, a model widely considered in condensed matter
physics. Most importantly, we study the evolution of
τs over a large parameter range (τs varies by more than
three order of magnitude), allowing us to span from the
weak to the strong scattering regime. Comparing our re-
sults to analytical 1st-order Born calculations, we reveal
the strong influence of disorder statistics on the crossover
and discuss the relevance of the Ioffe-Regel-like criterion
kls ∼ 1.

First-order Born approximation.— For weak disorder,
we can develop an intuitive, physical picture of the scat-
tering time based on the 1st-order Born approxima-
tion (referred to as Born approximation in the follow-
ing) [1, 2]. In this perturbative treatment, τs can be in-
terpreted as the finite lifetime of the incoming free state
|ki〉, as it is scattered towards a continuum of final mo-
menta |k′〉 with |k′| = |ki|. The initial momentum dis-
tribution therefore decays exponentially in this regime,
with the characteristic time τs:

n(ki, t) = n(ki, 0) e−t/τs , (1)

where t is the propagation time in the disorder. The
scattering is only allowed if there exists a spatial fre-
quency component kdis in the disordered potential that
matches the elastic scattering condition kdis = k′ − ki
[Fig. 1(a)]. The weight of scattering in this direction
relies uniquely on the spatial frequency distribution of
the disorder C̃(kdis), i.e., the Fourier transform of the
two-point correlation function C(∆r) = V (r)V (r + ∆r)
(where · · · refers to disorder averaging). Using the Fermi
golden rule, the Born elastic scattering time τBorn

s is ob-
tained by summing the contributions coming from the
scattering in all directions, yielding:

h̄

τBorn
s

= 2π
∑

k′

C̃(k′ − ki) δ[εk′ − εki ] , (2)

where εk = h̄2k2/2m is the free-state energy, with m the
atomic mass.

The correlation length σ of the disorder, i.e., the typ-
ical width of C(∆r), introduces a characteristic spatial
frequency σ−1 that defines two scattering regimes. For
low initial momentum ki � σ−1, the disorder contains
the spatial frequencies that are necessary to scatter the
atoms in all directions and the scattering is isotropic
[see Fig. 1(b)]. In the opposite case of large momentum
ki � σ−1, the disorder’s spatial frequencies are too small

for satisfying the backward scattering condition (kdis =
−2ki) and the scattering is essentially concentrated in
the forward direction. As discussed in [21, 26, 27, 29],
the Born prediction (2) yields different behaviors in the
two regimes: τBorn

s is essentially constant for isotropic
scattering while it increases linearly with momentum in
the forward case (see dashed lines in Fig. 2 and [32] for
further details).

Note that the validity of the Born approximation can
be estimated in an intuitive manner. Due to its finite
lifetime τBorn

s , the matter wave acquires a finite energy
width ∆ε = h̄/τBorn

s [responsible for the ring’s width seen
in Fig. 1(b)]. By consistency, ∆ε should be much smaller
than the initial energy εki ∝ k2i , yielding the usual weak
scattering criterion kil

Born
s � 1 introduced above (with

lBorn
s ∝ kiτ

Born
s ). In the following we study experimen-

tally and numerically the validity of this criterion by an-
alyzing scattering times for various potential disorders
V (r) and over a large range of initial momentum ki, al-
lowing us to investigate the crossover between weak and
strong scattering.

Experiment.— Based on Eq. (1), we directly measure
τs by monitoring the decay of the initial momentum dis-
tribution of atoms launched with a well defined initial
momentum ki into a disordered potential V (r) [25]. The
experimental set-up is similar to the one described in
Refs. [33, 34]. It relies on the production of a quasi non-
interacting cloud of 105 87Rb atoms in a F = 2, mF = −2
Zeeman sublevel, suspended against gravity by a mag-
netic field gradient. A delta-kick cooling sequence leads
to an ultra-narrow momentum spread ∆k = 0.15 µm−1

(T ∼ 150 pK). A mean initial momentum ki, ranging
from ki = 1 µm−1 to ki = 20 µm−1 along the y axis, is
then given to the atoms by pulsing an external magnetic
gradient for a tunable duration.

A quasi-2D disordered potential in the (y − z) plane
is created by a laser speckle field [35, 36], realized by
passing a laser beam along the x axis through a rough
plate and focusing it on the atoms [32]. The wavelength
of the laser is red- or blue-detuned with respect to the
atomic transition (D2 line of 87Rb around 780 nm) in
order to create either an attractive or a repulsive dis-
ordered potential [see Fig. 1(a)]. The detuning being
small enough (∆ ∼ 1 THz), both disorders have the
same spatial correlation function, with a measured cor-
relation length σ = 0.50(1) µm (radius at 1/e). However,
they differ by their probability distribution P (V ), both
exhibiting the asymmetrical exponential distribution of
laser speckle fields [36], but with opposite signs (see inset
of Fig. 3): P (V ) = |VR|−1e−V/VR ·Θ(V/VR), with Θ the
step function. Here VR is the averaged amplitude (nega-
tive for attractive and positive for repulsive laser speckle),
while the rms disorder amplitude, i.e., the quantity that
characterizes the disorder strength, is the absolute value
|VR|. When varying the laser power and detuning, |VR|/h
ranges from 39 Hz to 3.88 kHz.
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FIG. 2. Measurements of the elastic scattering time τs. (a) Measurement procedure. The momentum distributions
n(k, t) are observed for different propagation times t in the disorder, here shown for the parameters VR/h = −104 Hz (attractive
case) and ki = 2.31σ−1. The normalized height ñi(t) is determined from n(k, t) by a Gaussian fit of the radially integrated
angular profile [32]. When plotted as a function of the time t, it shows an exponential decay from which we extract τs, as
illustrated for two different initial momenta ki = 0.76σ−1 and ki = 2.31σ−1, still at VR/h = −104 Hz. (b) Experimental
(points) and numerical (solid lines) values of τs as function of the initial momentum ki for different values of the disorder
amplitude |VR|, in the cases of an attractive disorder (left panel) and a repulsive disorder (right panel). The initial momenta
are shown in units of the characteristic frequency σ−1 of the disorder. Born predictions τBorn

s are indicated by dashed lines.
Note that the Born curves are simply shifted down for the various disorder amplitudes due to the scaling τBorn

s ∝ 1/|VR|2 (see
text).

The experimental sequence starts with the prepara-
tion of an atomic cloud with momentum ki. At t = 0 we
rapidly switch on the disorder potential V (r), performing
a quantum quench of the system. After a time evolution
t, the disorder is switched off and we record the momen-
tum distribution n(k, t) by fluorescence imaging after a
long time of flight. Thanks to gravity compensation, up
to 300 ms can be achieved, corresponding to a momentum
resolution ∆kres = 0.2 µm−1 [37]. From these images we
extract the evolution of the initial momentum popula-
tion n(ki, t), as shown in Fig. 2(a) [32]. At low disorder
strength |VR|, an exponential decay is observed for almost
two orders of magnitude and a fit yields the experimen-
tal value of τs [refer to Eq. (1)]. Such exponential decay
is expected to persist at larger disorder amplitudes, ex-
cept if one drives the system to the very strong scattering
regime (see e.g. [38]). However, no significant departure
from an exponential decay was observed in our experi-
ment and all the recorded decays could be fitted by an
exponential function.

General results.— Figure 2(b) shows the measured val-
ues of the elastic scattering time τs for both the attractive
and repulsive laser speckle disorder cases. The large set of
disorder amplitude and initial momenta allows us to ob-
serve variations of τs from 40 µs to 100 ms. These obser-
vations are compared to 2D numerical calculations (solid
lines) [32], with a remarkable agreement over almost the
whole data range, confirming the quasi-2D character of
our configuration. Deviations are nevertheless observed

in a small zone (very low momenta and disorder am-
plitudes, upper left part on the graphs) and may be at-
tributed to technical difficulties to precisely measure τs in
this regime due to the finite momentum resolution ∆kres.

The Born prediction (2) is also shown in Fig. 2(b)
(dashed lines) [39]. Note that τBorn

s scales with the rms
value |VR| as 1/|VR|2 [32], but does not depend on the
specific form of the disorder amplitude distribution P (V ).
As a consequence, the prediction is strictly identical for
both attractive and repulsive speckles, since they pos-
sess the same frequency distribution C̃(kdis). In general,
τBorn
s shows a very good agreement with the data at low

scattering strength, i.e., weak |VR| and large ki [upper
right part on Fig. 2(b)], as expected for this first order
perturbative approach. However significant deviations
appear at the lowest disorder amplitude (|VR|/h = 39 Hz,
black dots) when considering the low initial momentum
range ki <∼ σ−1. As the disorder strength |VR| increases,
the deviations become more pronounced and extend to
larger momenta. In strong scattering conditions, the two
regimes previously identified (isotropic and forward scat-
tering) are then not relevant anymore. Moreover, large
differences are observed between attractive and repulsive
disorders, another signature of the complete failure of the
Born approximation.

In order to visualize these deviations, we show in Fig. 3
maps of the ratio τs/τ

Born
s as a function of the parameters

ki and |VR|. The important role of the disorder statistics
is further emphasized by numerically extending our anal-
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FIG. 3. Deviations from the Born predictions for
different disorder amplitude distributions. 2D repre-
sentation (logarithmic color scale) of the ratio τs/τ

Born
s as a

function of |VR| and ki for attractive (1st row) and repul-
sive (2nd row) disordered potentials. Both experimental (left
column) and numerical (right column) data are shown. 3rd
row: same representation for a Gaussian-distributed disorder
(numerical study). The amplitude probability distributions
P (V ) for the three types of disorders are plotted in the inset.

ysis to the case of a disorder with a Gaussian amplitude
probability distribution P (V ) = (

√
2πVR)−1e−V

2/2V 2
R

(inset of Fig. 3), |VR| being still the rms value. For con-
sistency, we have chosen the same two-point correlation
function C(∆r) as the one of the laser speckles considered
so far [32].

Weak to strong scattering crossover.— The maps
shown in Fig. 3 allow us to investigate the crossover
between the weak (Born regime) and strong scatter-
ing regimes. Considering first the case of a Gaussian-
distributed disorder (3rd row), we observe a striking co-
incidence between the iso-deviation lines and the dimen-
sionless parameter kil

Born
s . In particular, the kil

Born
s = 1

line, i.e. the usual criterion introduced earlier, cor-
responds to a typical deviation of 25%. Importantly
enough, this observation confirms, in a quantitative man-
ner, the relevance of the criterion kil

Born
s = 1 to differ-

entiate the weak and strong scattering regimes for this
commonly used type of disorder.

In contrast, this criterion does not hold for laser speckle
disorders, for which the deviations to the Born prediction
are much more pronounced. For instance, the kil

Born
s = 1

line corresponds now to deviations up to 250% for the
attractive case (1st row) and to 400% for the repulsive
case (2nd row). As a result, the crossover is significantly
shifted towards larger kil

Born
s values, i.e. larger momenta

and lower disorder amplitudes. More precisely, the same
25% deviation as considered above corresponds to an ef-
fective criterion kil

Born
s = 40 (white dashed lines).

Beyond the 1st-order Born approximation.— An ex-
haustive description of the deviations from the Born pre-
diction is beyond the scope of the present letter [40]. It is
however possible to get some physical insight by consider-
ing two different regimes. First, in the intermediate scat-
tering regime of low momenta and low disorder amplitude
(upper left part of the maps in Fig. 3), the deviations can
still be understood within perturbative theory [1, 2], go-
ing to higher order corrections [21, 41, 42]. Since the
next higher-order term scales as 1/V 3

R , it is negative for
attractive speckle disorder, positive for the repulsive one,
but vanishes for Gaussian disorder due to the symmetry
of the probability distribution. This explains the impor-
tant difference between the three types of disorder in this
parameter range.

When going to the very strong scattering regime (lower
left part of the maps), the perturbative approach com-
pletely breaks down. To interpret the data, it is then
fruitful to invoke the general concept of spectral func-
tions Aki

(E), which give the energy probability distri-
bution of the initial state |ki〉 once the disorder is sud-
denly switched on. Their width is indeed inversely pro-
portional to the measured scattering time τs [43]. In the
strong disorder limit, the spectral functions are known
to converge towards the disorder amplitude distribution
P (V ) [38, 44, 45]. As a result τs essentially scales as
1/|VR| in this limit, yielding values well above the Born
prediction (scaling as 1/|VR|2, see above). That general
trend explains the large positive deviations observed in
Fig. 3. In this regime, the specific shape of the spec-
tral functions associated to each type of disorder leads
however to discrepancies for the measured scattering
times [38, 44, 45]. In particular the spectral functions
for the repulsive speckle disorder exhibit a narrow peak
at low energy [46], which is responsible for the striking
increase of the scattering time (almost two orders of mag-
nitude from the Born prediction). In order to support
this analysis, we have verified the very good agreement
between the present measurements and the width of the
spectral functions recently measured for laser speckle dis-
orders in Ref. 45.

Conclusion.— Combining direct experimental mea-
surements, numerical simulations and comparison with
ab-initio Born calculations, we have provided an exten-
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sive analysis of the elastic scattering time τs for ultra-
cold atoms in disordered potential. Using the large ac-
cessible range of parameters, we have demonstrated the
strong influence of the disorder statistics on the relevance
of the commonly accepted kls ∼ 1 criterion to identify
the crossover from the weak to strong scattering regime:
while it is relevant for Gaussian disorder, large deviations
are reported for laser speckle disorder.

Our results open various prospects. On the theory side,
a natural follow up would be to go beyond the Born
approximation and compare our data to higher order
perturbative treatments [21, 30, 41, 42], self-consistent
Born approximation [22, 24, 47], the recently developed
Schwinger-Ward-Dyson theory [48], or semiclassical ap-
proaches [38, 44]. On the experimental side, the precise
knowledge of the elastic scattering time for laser speckle
reported here is of particular importance in view, for
instance, to investigate Anderson localization [49, 50].
This work then paves the way for further experimental
investigation in strong connection with microscopic the-
ories, either using the spectroscopic scheme proposed in
Ref. 45, or searching for direct signatures in momentum
space [25, 33, 34, 51–53].
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We describe here the methods (i) to extract the scattering time from the measurement, (ii) to
generate and characterize the laser speckle field, (iii) to calculate the Born prediction adapted to
our configuration and (iv) to perform the numerical simulations to estimate the scattering times.

EXTRACTION OF THE SCATTERING TIME τs

The measurement of the elastic scattering time τs is
based on the decay of the initial momentum distribution
n(ki, t), as illustrated in Fig. 1 for the parameters ki =
2.31σ−1 and VR/h = −104 Hz (same as in Fig.2(a) on
the main text).

The determination of τs is performed in three steps.
First, we determine the angular profile n(θ, t) by radi-
ally integrating the momentum distribution n(k, t) in
the (ky, kz) plane, θ = 0 corresponding to the initial
direction [Fig. 1(a)]. The lower and upper integration
limits correspond to twice the radial width of the ini-
tial momentum distribution. The reduced angular profile
ñ(θ, t) = n(θ, t)/n(0, 0) is obtained by normalizing this
profile by its initial value at time t = 0 and θ = 0. A
typical angular profile ñ(θ, t) for t = 17.5 ms is plotted
on Fig.1(b) (blue line). The general shape results from
the sum of two contributions: a narrow peak ñi(θ, t) that
corresponds to the unscattered initial distribution and
a broad background ñb(θ, t). The latter corresponds to
the scattered atoms to direction k′ and builds up pro-
gressively on time.

In a second step, the normalized height ñi(t) = ñi(0, t)
of the initial distribution is extracted by adjusting the
bi-modal distribution by the sum of a narrow Gaussian
peak accounting for ñi(θ, t) [1] and a broad Gaussian peak
accounting for the background ñb(θ, t) [red solid line in
Fig.1(b)]. Error bars of ñi(t) represent one standard de-
viations and are estimated from the noise on the experi-
mental data and the deviation of the model.

To finally extract τs, the decay of ñi(t) is plotted in
a semi-logarithmic scale [dots in Fig. 1(c)] and then ad-
justed by a pure exponential law of typical time τs.
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FIG. 1. Measurement protocol of the scattering time
τs. The procedure is illustrated for the same parameters than
in Fig. 2(a) of the main text, i.e., ki = 2.31σ−1 and VR =
−104 Hz. (a) Observed momentum distribution n(k, t) after
a propagation time t = 17.5 ms in the disorder (top: side view;
bottom: top view). The angular profile is obtained by radially
integrating around the initial peak (between the two dotted
lines). (b) The reduced angular profile ñ(θ, t) (blue line) is
adjusted by the sum of a narrow and a broad Gaussian peak,
both centered around θ = 0 (red line). The amplitude of the
narrow peak is used to extract the normalized height ñi(t).
(c) The normalized height ñi(t) is plotted as a function of
the propagation time t. The experimental points are fitted
by an exponential function of the form e−t/τs . Here we find
τs = 12.0(3) ms.
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LASER SPECKLE DISORDERED POTENTIAL

Quasi-2D laser speckle field generation

The laser speckle field is created by passing a laser
beam of wavelength λ ∼ 780 nm through a diffusive
plate, the configuration being identical as the one de-
scribed in Ref. [2]. As illustrated in Fig. 2(a), the in-
coming wave that illuminates the diffusive plate is con-
verging at the position d = 15.2(5) mm that coincides
with the position of the atoms. The intensity profile
of the illumination on the diffusive plate is a Gaussian
shape, of waist w = 9(1) mm (radius at 1/e2), truncated
by a circular diaphragm of diameter D = 20.3(1) mm.
This diaphragm sets the maximal numerical aperture to
NA = sin(θmax) = 0.55(2).

In this configuration a so-called Fourier speckle pat-
tern is formed around the position of the atoms. In
order to characterize it, the random intensity pattern
was recorded at the position of the atoms with an high-
resolution optical microscope, see Fig. 2(b). As can be
seen, the laser speckle field is very elongated along the
propagation axis (x direction), resulting in a quasi-2D
potential.
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FIG. 2. Laser speckle characterization. (a) Schematic
representation of the experimental configuration used for the
speckle generation, with NA = sin(θmax) = 0.55(2). (b) 3D
representation of the experimental laser speckle field. (c)
Transverse correlation function along the z direction (same
along y). Blue squares: experimental measurement cexp from
the recorded intensity pattern. Black solid line: transverse
Gaussian fit c2D, yielding σ = 0.50(1) µm (1/e radius). Red
solid line: effective paraxial calculations c3D (see text). Green
solid line: beyond paraxial calculations, as done in Ref. 2.
This line is barely visible due to superposition with the ef-
fective paraxial model. (d) Longitudinal correlation func-
tions with the same legend as in (c). The measured width
is σ‖ = 4.1(1) µm (FWHM) .

Spatial statistical properties: measurement of the
auto-correlation function

The normalized two-point correlation function of the
laser speckle field,

cexp(∆r) =
〈δI(r) δI(r + ∆r)〉

〈δI2〉 with δI = I−〈I〉 , (1)

is directly calculated from the recorded spatial pattern
shown in Fig. 2(b). The resulting transverse and lon-
gitudinal correlation functions are respectively shown as
blue squares in Fig. 2(c) and (d).

In the transverse plane, the shape is found to be very
close to a Gaussian. A fit of the form (solid black line):

c2D(∆r⊥) = e−∆r2
⊥/σ

2

, (2)

realized either along the y or z axis, yields σ = 0.50(1) µm
(1/e radius).

The laser speckle field being very elongated, the cor-
relation function has a much larger width in the longi-
tudinal direction x. It is characterized by the FWHM
σ‖ = 4.1(1) µm [see Fig. 2(d)].

Modeling the laser speckle field

Due to the large numerical aperture NA = sin(θmax) =
0.55(2), the precise modeling of the speckle field requires
in principle to go beyond the paraxial approximation. A
theoretical model (not detailed here) was thus used in
Ref. 2 to reproduce the measured correlation functions,
see green solid lines in Fig. 2(c) and (d).

However this theoretical model is quite heavy to han-
dle, especially in view of the determination of the 3D
spatial frequency distribution C̃(kdis), a key quantity
to calculate the Born prediction. Thus, we developed
a simpler model, based on the paraxial approximation
but including a global geometrical factor xscale to tune
the numerical aperture. In this effective paraxial model,
the correlation function can be calculated using Fourier
Transform (FT) [3]:

c3D(∆r⊥,∆x) ∝
∣∣∣FT

[
t(R⊥) Iinc(R⊥) e−iπ

R2
⊥∆x

λd

]
∆r⊥
λd

∣∣∣
2

,

(3)

where FT
[
f(x)

]
u

=
∫ +∞
−∞ dx f(x)e−2iπux. Here t =

disc
[
R⊥/(Deff)

]
represent the transmission of a circu-

lar diaphragm of diameter Deff = xscaleD, and Iinc =
e−2R2

⊥/(weff )
2

is the Gaussian illumination profile on the
diffuser, with effective waist weff = xscale w.

Setting xscale = 0.875(5) (resulting in an effective max-
imal numerical aperture NAeff = 0.5), the calculated cor-
relation function c3D(∆r) matches also very well with
the measurements, both on the transverse and longitu-
dinal directions [see red solid lines in Fig. 2(c) and (d)].



3

Thus, we used this effective paraxial model to calculate
the Born prediction for our specific disorder configuration
(see below).

Calibration of the disorder amplitude VR

In practice, the disorder amplitude VR can be cali-
brated by combining photometric measurements and cal-
culation of the atomic polarizability [4]. However it is
known that such method leads to systematic uncertain-
ties, typically around a few tens of percents (see e.g.
Refs. 2 and 5).

Here, we used the excellent agreement between the ex-
perimental determination of τs and the numerical simu-
lations [see Fig. 2(b) of the main text] to precisely de-
termine the disorder amplitude by applying an overall
correction α on the photometric measurement. In prac-
tice, the correction factor is calculated by minimizing
the differences between the experiments and numerics
for the particular momenta ki = 0.74σ−1, leading to
α = 1.29(2). We mainly attribute this correction to
the difficulty to estimate precisely the extension of the
speckle field at the position of the atoms.

FIRST ORDER BORN APPROXIMATION

Rescaled scattering times τ̃Born
s

An important feature of the Born prediction is the sim-
ple scaling τBorn

s ∝ 1/|VR|2 with the disorder amplitude.
Indeed, the spatial frequency distribution of the disor-
der can be written in the form C̃(kdis) = |VR|2c̃(kdis),
where c̃(kdis) is the Fourier transform of the normalized
correlation function c(∆r) [as in Eq. (1) above]. The
Born prediction [see Eq. (2) of the main text] can then
be rewritten in the form:

τBorn
s (ki, VR) =

h̄ER

πV 2
R

· τ̃Born
s (ki) (4)

where ER = h̄2/mσ2 is the so-called correlation energy
and τ̃Born

s is the rescaled scattering time that gives the
dependence with the momentum ki. Its expression relies
on the integration of the normalized spatial frequency
distribution c̃(kdis) = c̃(k′−ki) over the elastic scattering
sphere (|k′| = |ki|) [6, 7]:

τ̃Born
s (ki) =

4π3σ2

|ki|
∫
dΩk′ c̃(k′ − ki)

, (5)

3D Born prediction τ̃Born
s,3D

The rescaled Born prediction τ̃Born
s,3D corresponding to

our experimental configuration is shown in Fig. 3. As

forward sc.

ik
k'

isotropic sc.

ikk'

FIG. 3. Rescaled Born prediction τ̃Born
s . Black solid line:

3D Born prediction τ̃Born
s,3D using the correlation c3D(∆r) given

by Eq. (3) (effective paraxial model). Red dashed line: 2D
Born prediction τ̃Born

s,2D for a transverse Gaussian correlation
of size σ (1/e radius). Green dash-dotted line: asymptotic
behavior at large momentum τ̃Born

s ∼ √πkiσ. Illustrations
of the momentum distribution in the isotropic (ki � σ−1)
and forward scattering (ki � σ−1) regimes are the same as
in Fig. (1) of the main text.

said above, this calculation uses the effective paraxial
model c3D given by Eq. (3) to reproduce the measured
two-point correlation function.

Although the configuration is slightly different, the re-
sults discussed in Refs. 8 and 9 for the case of a pure
Gaussian illumination still hold for our case [10]. First,
τ̃Born
s,3D increases linearly with the momentum as

√
πkiσ in

the large momentum limit (ki � σ−1), see dash-dotted
green line in Fig. 3. This behavior is generic for matter
wave and does not depend on the dimension. Second,
τ̃Born
s,3D tends towards a constant in the low momentum

limit (ki � σ−1). This behavior is specific to the laser
speckle disordered potential [11]: it results from the ab-
sence of white noise limit due to the infinite correlation
range in the longitudinal direction [3].

Comparison with 2D prediction τ̃Born
s,2D

The very elongated nature of the laser speckle field,
having an infinite correlation range along the longitudi-
nal direction, strongly suggests that our experiment can
be described by a pure two-dimensional system. This is
confirmed by the excellent agreement between the full 3D
calculation τ̃Born

s,3D and the Born prediction τ̃Born
s,2D for a 2D

disordered potential having a Gaussian correlation of size
σ (1/e radius). In the latter case, one has [9, 12]:

τ̃Born
s,2D (ki) = ek

2
i σ

2/2/I0(k2
i σ

2/2) , (6)

where I0 is the zero-order modified Bessel function. τ̃Born
s,2D

tends towards 1 for low initial momentum (ki � σ−1)
and, as expected, increases in the same way as the 3D
case at large momentum (τBorn

s ∼ √πkiσ for ki � σ−1).
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NUMERICAL SIMULATIONS

The numerical calculations are performed by solving
the Schrödinger equation for a particle of mass m in a
2D disordered potential V (r). The initial state is a Gaus-
sian wave packet of central momentum ki and negligible
momentum spread ∆k [13]. The scattering time τs is
extracted from the decay of the initial momentum distri-
bution in the same way than for the experimental data
(see Fig. 1). The simulations are averaged over 14 dif-
ferent disorder realizations, which is found sufficient to
achieve convergence.

To generate the disordered potential, we first calcu-
late the field resulting from the convolution of a spatially
uncorrelated complex random field, whose real and imag-
inary parts are independent Gaussian random variables,
with a Gaussian profile accounting for the spatial corre-
lations. The Gaussian-distributed potential is obtained
by considering the real part of this field, leading to a
Gaussian amplitude probability distribution. Instead,
the laser speckle disordered potentials are obtained by
considering the intensity (modulus square) of the result-

FIG. 4. Numerically generated disorders. The am-
plitude probability distribution P (V ) (left column) and the
normalized correlation function c(∆r) (right column) are
shown for attractive (first row), repulsive (second row) and
Gaussian-distributed (third row) disordered potentials. The
amplitude probability distributions are in perfect agreement
with the theoretical functions (black dashed lines), namely an
exponential function for the attractive and repulsive disorders
and a Gaussian function for the Gaussian disorder. The three
disorders exhibit the same correlation function, which corre-
sponds to a Gaussian function of size σ (1/e radius).

ing field [3], with a negative (resp. positive) sign for the
attractive (resp. repulsive) disorder.

In each case, we adjust the amplitude of the complex
random field for the rms value of the probability distribu-
tion to be VR. It yields P (V ) = |VR|−1e−V/VR ·Θ(V/VR),
with Θ the step function, for the attractive and repul-
sive laser speckle fields (first and second rows in Fig.4),

and P (V ) = (
√

2πVR)−1e−V
2/2V 2

R for the Gaussian-
distributed disorder (3rd row). In the same way, the
spatial width of the Gaussian profile is adjusted in each
case for the two-point correlation function of the disor-
der to be a Gaussian of size σ (1/e radius), i.e., c(∆r) =

e−∆r2/σ2

.
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