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Abstract: We demonstrate a hybrid dual-stage nonlinear compression scheme, which allows 
the temporal compression of 330 fs-pulses down to 6.8 fs-pulses, with an overall transmission 
of 61%. This high transmission is obtained by using a first compression stage based on a gas-
filled multipass cell, and a second stage based on a large-core gas-filled capillary. The source 
output is fully characterized in terms of spectral, temporal, spatial, and short- and long-term 
stability properties. The system’s compactness, stability, and high average power makes it 
ideally suited to drive high photon flux XUV sources through high harmonic generation. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Few-cycle laser sources are the subject of intense research efforts worldwide since they allow 
efficient high-harmonic generation (HHG) and the emission of isolated attosecond pulses. 
This results in compact and highly coherent radiation sources in the extreme ultraviolet 
(XUV) and soft X-ray ranges, with a rapidly increasing number of scientific and industrial 
applications such as ultrafast spectroscopy, nanoscale imaging, and attosecond science [1–3]. 
Laser sources based on titanium-doped sapphire (Ti:Sa) have, for a long time, been almost 
exclusively used to drive the HHG process and to pioneer attosecond physics. The pulse 
duration typically available from such lasers is 25 fs, so that a single stage of nonlinear 
compression in a gas-filled capillary result in few-cycle pulses [4]. Despite extraordinary 
material properties such as gain bandwidth and thermal conductivity, Ti:Sa systems suffer 
from the short upper state lifetime, their large quantum defect and the fact that they must be 
pumped with high brightness green lasers. This limits the efficiency, output average power, 
and prevents repetition rate scaling to drive strong field physics experiments. 

Laser physicists have been working on more efficient and power scalable ultrafast sources 
for strong field physics for over a decade. In particular, optical parametric chirped pulse 
amplifier systems appear as a particularly promising solution [5,6], since they can deliver 
extremely short pulses in various wavelength ranges and are less impacted by thermal effects 
because they are based on a non-resonant nonlinear process. However, in order to obtain good 
spatial and temporal quality, the energy transfer from the pump to the signal is around 10%, 
so that the pump laser energy must be scaled accordingly, with stringent requirements in 
terms of spatial and temporal quality. 

Currently, the most mature and powerful ultrafast source technology is undoubtedly 
ytterbium-based systems, with average power levels beyond 1 kW [7–9] and numerous 
industrial applications. These lasers have been used to drive the HHG process as early as 
2009 [10], but the long pulse duration delivered by these sources (300 fs – 2 ps) limits their 
relevance to this application field. Therefore, nonlinear compression setups have been used 
successfully to reduce the pulse duration and obtain XUV photon flux among the highest ever 
reported for HHG-based sources [11]. However, to reach sub-3 cycles regime (< 10 fs at 1030 
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nm), which is typically required in combination with gating techniques to obtain isolated 
attosecond pulses, two stages of compression must usually be implemented [12]. This reduces 
the energy efficiency of Yb-based systems dedicated to attosecond physics. 

In this article, we describe a two-stage nonlinear compression setup that provides enough 
compression ratio to reach sub-10 fs pulse duration from a high-energy ytterbium-doped fiber 
amplifier (YDFA) laser, while ensuring the highest transmission (61%) ever reported for two 
cascaded stages. This results in the generation of 6.8 fs, 140 µJ pulses at 150 kHz repetition 
rate, corresponding to 21 W average power. These performances are achieved by combining 
two nonlinear compression technologies, first a gas-filled multipass cell, and second a large 
diameter-core capillary. The described laser system is robust, compact, and power efficient, 
making it an ideal driver laser for application-ready high flux XUV and attosecond sources. 

2. Rationale 

Gas-filled capillaries are the most widespread nonlinear media used to temporally compress 
femtosecond pulses with energies above 100 µJ. Propagation in this lossy waveguide imparts 
spectral broadening through the self-phase modulation (SPM) effect along with a frequency 
chirp that can be removed by dispersive optics at the output of the capillary. The capillary 
diameter choice is bounded by two phenomena: it should be large enough to avoid significant 
ionization of the gas, and small enough to induce sufficient SPM, which directly translates to 
the compression ratio. The gas nature and pressure inside the capillary is limited by the 
threshold for self-focusing, which does not depend on the diameter. Moreover, for practical 
reasons and to ensure a reasonable footprint, the capillary length is often of the order of 1 m. 
As a consequence, for pulse durations of 300 fs and energies between 100 µJ and 1 mJ, as is 
standard at the output of YDFA systems, a capillary diameter of 250 µm is often used to 
obtain a compression ratio around 10. In a laboratory environment where longer capillaries 
with larger diameters can be used, a recent experiment demonstrates a compression ratio of 
33 in a 6-m-long 500-µm-diameter capillary with a transmission of 70% [13]. 

On the other hand, the losses introduced by a capillary are related to two parameters: the 
spatial quality of the input laser, which determines the fraction of energy that can be coupled 
to the fundamental mode exhibiting the lowest losses, and the ratio of diameter to central 
wavelength, which determines the losses of each capillary mode. YDFA systems often exhibit 
close-to-perfect spatial quality, so that the losses are dominated by the capillary losses. 
Experimentally obtained transmission factors for such setups at the output of YDFA are in the 
range of 60% (single stage) to 30% (dual-stage) [12,14]. 

To increase this transmission, and allow energy scaling of compression setups, a recently 
demonstrated technique consists in propagating the pulses to be compressed in a multipass 
cell (MPC) that includes a nonlinear medium [15]. The MPC is formed by an arrangement of 
concave mirrors and the input beam is matched to the stationary beam in the cell. As it 
propagates through a large number of roundtrips, the input pulse is periodically focused. If the 
nonlinearity per roundtrip is kept sufficiently small, the spatial Kerr effect is redistributed 
over the whole beam, ensuring high spatial quality at the output, despite a possibly large 
accumulated temporal B-integral [16]. This technique can be considered as an extension of 
multi-plate setups [17–19] with a distribution of the nonlinearity over tens of passes in the 
material instead of few, inducing a better output spatial quality and allowing higher 
compression factors. Compared to capillaries, this technique provides several additional 
degrees of freedom in terms of geometry, nonlinear material used (solid [15,20] or gas 
[21,22]), and spectral phase control through the mirror coatings. The most obvious 
improvement is that, using commercially available mirrors, the transmission of the cell is 
above 90% in all reported demonstrations. One drawback of cell-based setups to reach very 
short pulse durations, however, is that the pulses undergo a large number of reflections on the 
cell mirrors (several tens), so that spectral phase aberrations induced by the mirrors are 
magnified. The design requirements on the mirrors in terms of bandwidth, spectral phase 
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