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Abstract— We explore the frequency selective functionalities of 

a nonuniform PT-symmetric Bragg grating with modulated 
complex index profile. We start by assessing the possibility to 
achieve an efficient apodization of the PT-symmetric Bragg 
grating spectral response by using direct adaptations of the 
conventional apodization techniques. A particular emphasis is 
put on the binary type structures with different duty cycle 
variations. We subsequently propose a new efficient grating 
modulation technique allowing for largely improved 
reflection/transmission characteristics of the Bragg gratings. The 
overall intention of our approach is to adapt conventional Bragg 
gratings designs to improve a PT-symmetric case, fostering thus a 
new generation of active photonic devices. 

Index Terms—Integrated optoelectronics, optical amplifiers, 
waveguides, coupled mode analysis, PT-symmetry. 
 

I. INTRODUCTION 

he proposal in 1998 by Bender and Boettcher that the 
concept of respecting parity-time (PT) symmetry “non-

Hermitian Hamiltonians” could stand as a complex extension 
of the conventional quantum mechanics quickly became a new 
paradigm in theoretical physics [1,2]. Adapting the concept in 
optics, the refractive index of PT symmetric structures is 
complex-valued with adequately incorporated gain and loss in 
spatially separated regions of the system. The spatial 
distributions of gain-loss can either occur in the direction 
transverse to the light propagation, as in the case of the 
coupled directional couplers, or along the light propagation 
direction, as in the case of the PT-symmetric Bragg gratings 
(PTBGs) shown in Fig. 1. Apart from fundamental research 
motivations, the interest in these artificial systems is strongly 
driven by the practical outcomes from two unique properties 
of PTBGs:  
(i) Spatial (modal) non-reciprocity [3-9], different from that 
based on the Faraday magneto-optical effect. As illustrated in 
Fig. 1 the reflectivity of a PTBG can be extremely low for 
light incident from one side, and extremely high when light is 
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incident from the opposite side. This property can even be 
obtained without any gain by using a fully passive approach, 
provided that an appropriate amount of loss is incorporated in 
the system [10-12]. 
(ii) A large evolution of dispersion properties and band gap 
behavior of a PTBG induced by a limited variation of the gain-
loss level [5,6]. Such dispersion changes can be 
advantageously exploited for implementing switches and 
modulators controlled by tuning of the gain-loss level [13-20]. 

 
Fig. 1. Sketch of a PT-symmetric Bragg mirror and associated complex 
index profile nre+inim. 
 

As was learnt over decades in the case of conventional 
passive type Bragg gratings with countless applications in 
optical networks, one of the most stringent requirements to be 
fulfilled for practical applications is related to the control of 
the spectral response and/or Bragg grating dispersion 
properties. For instance, the use of Bragg gratings as filters in 
Wavelength Division Multiplexing (WDM) requires the 
efficient control of the whole spectral shape, related namely to 
the reduction of the secondary sidelobes level. Such reduction 
is usually achieved by tapering the coupling strength profile, a 
process known as apodization. The implementation of 
apodization techniques regarding PT-symmetric systems has 
been to the best of our knowledge unexplored so far and this 
motivates the present work. A particular emphasis is put on 
the use of binary type structures and duty-cycle variation 
methods. 

The paper is organized as follows. The generic case of 
PTBGs with tapering of the real and imaginary components of 
the refractive index profile thanks to conventional window 
apodization functions is treated in Section 2. Possible 
combinations for separate tapering of the real and imaginary 
components of the coupling profile are left for more detailed 
studies. Section 3 is dedicated to the tapering of the complex 
coupling profile by using duty cycle methods in the case of 
periodic binary structures. In Section 4 we compare the 
efficiency of this method with that of using modulated 
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aperiodic structures and propose a new modulation technique 
which leads to largely improved Bragg gratings 
characteristics. Conclusions end the paper. 

II. APODIZATION OF THE PT-SYMMETRIC BRAGG GRATING 
SPECTRAL RESPONSE BY TAPERING OF THE COMPLEX PROFILE 

 
We consider a one-dimensional (1D) Bragg grating of 

length L with the PT-symmetric refractive index distribution, 
)()()()()( zIznizRznnzn IRo ∆+∆+=  in the interval |z| < 

L/2. The system is embedded in a homogeneous medium 
having a uniform refractive index n0 = 1.4 for |z| > L/2. The 
considered case loosely corresponds to that of a Bragg grating 
written in an optical fiber. Here, ∆nI,R (z) represent the fast 
variating index contrast shifted by a �/4 for the real and 
imaginary parts (e.g. ∆nR(z) ∝ cos(2�z/�) and 
∆nI(z) ∝ sin(2�z/�) for a sinusoidal variation), while R(z), I(z) 
are the slowly varying tapered envelopes of the real and 
imaginary modulations of the refractive index, respectively. 
The fact that the index contrast here is two orders of 
magnitude larger than in a usual fiber grating does not affect 
the generality of obtained results and offers some 
computational advantages. 

As known, in the case of conventional passive type gratings 
the shape of the spectral response follows the Fourier 
transform of the tapering function [21]. In our study we 
consider an example of the Hamming type apodization 
function f(z)=1+0.852cos(2πz/L) that is used as envelope for 
R(z) and I(z). The Hamming apodization provides in 
conventional gratings an optimal suppression of the first 
sidelobes.  

The resulting spectral response obtained for a 64 periods 
PTBG with index contrast ∆n=±0.02 is displayed in Fig. 2(a). 
For the sake of comparison, the spectral response of a uniform 
PTBG is also presented as a reference. The application of the 
Hamming function envelope suppresses the sidelobes level by 
approximately 30 dB as compared to the unapodized grating 
spectral response. On the other hand the reflection level 
remains very low for both apodized and uniform PTBGs for 
the reversed direction of light propagation [Fig. 2(b)]. Note 
that the transmission level is practically not perturbed by the 
apodization procedure. The obtained results are totally 
consistent with the well defined roles of the factors in the 
apodized index profile: 

 

( ) 2 /
0( ) i zn z n f z ne π Λ= + ∆    (1) 

 
The slow envelope f(z) brings spectral apodization while the 
complex single side-band modulation ∆n×exp(i2�z/Λ) results 
in thenon-reciprocal PT-symmetric behavior [3,4].  

 
Fig. 2. (a) Reflection and transmission spectra of apodized and uniform PT-
symmetric Bragg gratings for light injection from the front side; (b) Same for 
light injection from the end-side. 
 

The apodization of spectral response with any window 
function features a larger index contrast in the middle of the 
grating with progressive reduction of the contrast toward the 
grating edges |z| = L/2 to minimize the Gibbs phenomenon. 
Conversely, a modulation profile that is maximal at the edges 
of the grating and minimal in the center results in a strong 
increase of the sidelobes level, a rarely desired feature per se. 

To summarize, the apparent situation is quite similar to that 
occurring for passive-type apodized Bragg gratings. One 
substantial difference, however, is that the complex index 
profile of the PT-symmetric Bragg grating brings an additional 
degree of freedom. It becomes possible to independently 
modulate the real and imaginary components of the index 
profile. It is thus interesting to consider a Bragg grating with a 
pseudo-PT symmetric index profile, where modulation of the 
real and imaginary index are only balanced on average, across 
the whole structure, but are not locally equal. On the single 
period scale, the modulations of the real and imaginary index 
being unbalanced, the grating is not locally PT-symmetric. But 
we will see that the distributed nature of the interaction 
nevertheless causes similar features in spite of this absence of 
rigorous (local and global) PT symmetry. 

To illustrate the behavior of such pseudo PTBG we consider 
for R(z) and I(z) a pair of cosine functions superimposed onto 
the same constant modulation:  
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( ),( ) 1 cos 2 /R If z A z Lπ= +     (2) 

 
where coefficients |AR,I|<1 but may be distinct for the real and 
imaginary index modulations. Color maps corresponding to 
reflection and transmission spectra for the three fixed values 
of AR=0.852; 0; -0.852 and variable |AI|<1 are shown in Figs. 
3(a-c), respectively.  

 
Fig. 3. Reflection and transmission spectra of pseudo PT-symmetric Bragg 
gratings as function of parameter AI used for modulation of the imaginary part 
of the index profile. a) AR=0.852; b) AR=0.0; c) AR=-0.852. 
 

The three color maps in Fig. 3(a) illustrate the situation 
when the real part of the index profile is modulated with the 
Hamming function (AR=0.852) and the imaginary part is 
modulated with variable AI. The dotted line at AI=0.852 
indicates the case depicted above in Fig. 2 of the apodized 
PTBG. It can be seen that the degradation of the spectral 
response with deviation from the ideal situation when AI = AR, 
e.g. the re-emergence of sidelobes, is rather gradual. The tail 
suppression of the spectral response still remains acceptable 
for ±15% variations around the optimal value of AI = 0.852 
associated with the rigorous PT-symmetry. Furthermore, the 
non-reciprocal grating behavior is persistent in the whole 
range of the AI parameter variation.  

A distinctive behavior can be observed with  AI ≈ -1, i.e. 
with anti-tapering of the imaginary profile, opposite to the 
enhanced modulation of the real part in the middle of the 
grating. This combination results in a narrow amplified single 
mode transmission by 25 dB while the rear side reflection 
level is lower by 15 dB. This regime can be used for the 
realization of a narrow-band single-mode amplifier. 

The color maps in Fig. 3(b) illustrate the case of a Bragg 
grating with uniform modulation of the real part of the index 
profile (hence AR=0 and f(z)=1). The dotted line at AI = 0 
indicates the position of the rigorous PT-symmetric index 
profile. As for the previous case the PT-symmetric non-
reciprocal grating behavior is manifested throughout the whole 
range -1 < AI < 1. 

The color maps in Fig. 3(c) correspond to the case AR = -
0.852. As explained above, this situation is not favorable for 
the spectral tail suppression. Meanwhile a distinct interesting 
behavior can be observed when AI ≈ 1. A higher modulation of 
the real part of the index profile towards the ends of the 
grating combined with enhanced modulation of the imaginary 
part in the middle of the grating results here in the selection at 
the Bragg wavelength of a single and narrow longitudinal 
mode with more than 30 dB reduction over satellites lobes. 
This regime is highly desirable for a single-mode Distributed-
Feedback (DFB) laser. 

The above examples illustrate some useful functionalities 
for optics applications that can be achieved by using PT-
symmetric grating structures with nonuniform complex index 
profiles. However, the bottleneck point that could preclude the 
actual application of these concepts is related to the difficulty 
of the technological realization of modulated complex index 
profile gratings, with materials locally sampling all combined 
degrees of modulation R(z) and I(z) along the tapers. It would 
be way simpler to use a unique set of materials for high and 
low refractive index units as well as for gain and loss media. 
The conventional solution employed to solve this issue in the 
case of passive binary type periodic structures is to use duty-
cycle modulation methods. We examine in the next Section 
how to modify them. 

III. DUTY-CYCLE MODULATION OF BINARY PT-SYMMETRIC 
GRATINGS 

The essence of the duty-cycle variation method when 
applied to periodic binary type gratings with alternating 
regions of high and low effective indices is to use the 
dependence of the coupling strength on the grating duty-cycle. 
Since such method is compatible with a binary etching process 
(using for simplicity a constant etch depth), it is especially 
attractive when Bragg-like structures are realized by surface 
corrugation techniques as it is often the case for photonic 
crystals or similar 1D or 2D periodic structures. Several duty-
cycle variations methods are described in literature [22-26]. 
The basic duty cycle (BDC) variation method introduced by 
Sakata [22] uses the coupling strength dependence on the 
grating duty cycle, i.e. the ratio of the grating ridge width 
(Λ+∆)/2 to the grating period Λ, where ∆/2 represents the 
ridge extra length with respect to the half period length [Fig. 
4(a)]. The “Phase Shifted Pair Gratings” method (PSPG) [23] 
alternates on a double grating period length (2Λ) ridges of 
length (Λ+∆)/2 and (Λ-∆)/2 separated by fixed Λ/2 groove 
intervals [Fig. 4(b)], resulting in two cells of unequal length 
within the 2� period. The off-resonance modulation (ORM) 
method [24,25] is based on alternating whole gratings cells 
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(ridge+groove) of modulated lengths Λ+∆ and Λ-∆ [Fig. 4(c)]. 
Finally, the concatenated gratings method (CG) proposed by 
Wiessman [26] represented in Fig. 4(d) is similar to the ORM 
with the difference that grating cells are of length Λ-∆ and ∆, 
truly retaining period �. The comparative analysis of different 
duty-cycle variation methods requires a separate discussion, 
which is not the scope of the present paper. Here, we focus our 
attention on the BDC and ORM methods that can be 
considered as the two most generic methods for coupling 
strength modulation in the case of periodic and 
deterministically aperiodic gratings, respectively (in their 
simplest form).  

The mean value χi of the coupling coefficient for the i-th 
grating cell is proportional to the amplitude of the main 
harmonics when the grating coupling profile is decomposed in 
a Fourier series. In the case of the BDC modulation, there is 
one cell per period (the grating period is constant) and the first 
term of the Fourier series is given by the expression: 

 

( )1 1
~ sin cos

2 2BDC

π πεχ
π π

� �Λ + ∆ � �=� � � �Λ � �� �

    (3) 

 
Here �=�/� is the i-th grating cell relative variation of the 

high or low index sections lengths, i.e. the groove/ridge 
asymmetry. By convention we associate � with the high index 
grating section length variation. For window apodization 
functions, the modulation � is maximal (no groove) at the 
edges of the grating, where the coupling strength vanishes, and 
gradually decreases toward the middle of the grating, where 
the coupling strength is maximal (symmetric grating). 

 
Fig. 4. Duty-cycle modulation methods: (a) Basic Duty-Cycle variation 
(BDC); (b) Phase-Shifted Pair Gratings (PSPG) method, of actual period 2�; 
(c) Off-resonance Modulation (ORM) method, with two compensating cells of 
unequal period within a 2� periodic pattern; (d) The similar Concatenated 
Grating (CG) method variant, where the period is �, and � has a different 
meaning. 
 

Since in the case of the BDC method, in contrast with the 
uniform PTGB [Fig. 5(a)], the length of the grating section 
with high index nH differs from that of the section with low 
index nL, the immediate question is how then the binary 
variation of the imaginary part of the index profile could be 

implemented? From general considerations, it is quite clear 
that in order to maintain PT-symmetric behavior the average 
level of gain and loss should remain balanced. To answer this 
question we consider the following example of a BDC 
modulated grating, where for heuristic reasons the grating 
period Λ and modulation strength ε are constant. 

 
Fig. 5. Schematic of PT-symmetric binary gratings. a) Uniform; b) BDC; c) 
Supersymmetric BDC. The black dotted indicate cell boundaries, while 
magenta dotted lines - low and high index point at half-sections boundaries, 
where the Gain/Loss (G/L) boundaries are then defined. 

 
One solution depicted in Fig. 5(b) is to implement an 

alternation of gain (G) and loss (L) according to the following 
algorithm: each high and low index sections are divided in two 
halves and gain (loss) is then assigned to the adjacent nH nL 
half-sections. Such a procedure automatically ensures the 
conservation of gain-loss balance along the grating.  

To verify the validity and efficiency of such a method, we 
consider the example of linear (triangular) modulation: 

 

LLzCz m /)2/()( −∝ε     (4) 

 
where Cm=max(εi) quantifies the maximal relative grating 
section length variation. 

The color maps in Fig. 6(a) illustrate the spectral response 
resulting from such a modulation of the complex index profile. 
The dotted line at Cm = 0 indicates the position of the rigorous 
PT-symmetric index profile. It can be seen that the tail 
suppression of the spectral response is by far less efficient as 
compared to the case of the Hamming type profile [Fig. 3(a)]. 
Furthermore, a marked drift of the spectral response central 
wavelength as a function of modulation strength Cm is 
observed. Such a drift of the central length as a function of the 
duty-cycle modulation is inherent and intrinsic to the BDC 
method and is not related to the PT-symmetric aspect of the 
problem [27]. Meanwhile, the PT-symmetric behavior of the 
grating is also affected. This is clearly evident from the 
transmission spectrum color map when |Cm|≈1. In contrast to 
the case of a PTBG apodized with the Hamming function that 
was represented in Fig. 2, the transmission of the BDC 
apodized binary grating is amplified by around 6 dB. The 
origin of such a discrepancy stems from the fact that the 
grating duty-cycle modulation with the BDC method also 
alters the PT-symmetric complex index profile. Upon 
inspection of Fig. 6(b) it can be observed that the modulation 
of the imaginary part of the index profile results in an 
additional phase shift -∆ϕ with respect to that of a uniform 
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PT-symmetric Bragg grating. Consequently the phase shift 
between the real and imaginary parts of the index profiles 
becomes locally different from π/2 required by rigorous PT-
symmetry.  

 
Fig. 6. Reflection and transmission spectra of binary PT-symmetric Bragg 
gratings as function of duty cycle modulation parameter Cm. a) BDC 
modulation method; b) supersymmetric BDC modulation method. 

 
To solve this issue and improve the performances of the 

BDC method we consider the ”supersymmetric” approach 
represented in Fig. 5(c). Instead of the periodicity rule it is 
based on a mirror inversion of a given cell while defining the 
adjacent one. In this case the additional phase shift of the 
imaginary profile +∆ϕ of one cell is compensated by the phase 
shift -∆ϕ of the adjacent cell resulting in a net zero shift for 
two consecutive cells. The period is then 2�.The color maps 
in Fig. 6(b) illustrate the spectral response resulting from such 
“supersymmetric” BDC method. It can be seen that the tail 
suppression of the spectral response is greatly improved in two 
respects. Suppression of the secondary sidelobes by ~23 dB 
with respect to the main lobe level at the central wavelength is 
achieved for modulation strength |Cm|≈0.7. Furthermore, the 
above mentioned drift of the central wavelength is also 
suppressed. 

Nevertheless, despite the marked improvement of 
performances, they are still below those obtained with the 
Hamming apodization function, prompting more analysis. 
Upon inspection of Fig. 5(c) it can be observed that the 
modulation of the gain/loss sequence occurs only for one type 
of section. In our case only the length of gain sections is 
modulated while that of loss sections remains always the 
same. This is at variance with the nH /nL sequence, where both 
low and high index section lengths are modulated. In 
accordance with Eq.  (3) this means that the grating strength 
for the real and imaginary parts of the grating profile is 
modulated by a different amount. So we constrained the phase 
shift to the proper value but lost the proper amplitude. The 
solution to solve this issue is to consider a different type of 
modulation scheme, where, instead of the duty cycle, the local 
period of cells of the grating is changed. This is the essence of 

the ORM method proposed in [24,25], which can be 
considered as a first step toward deterministic aperiodic binary 
systems. 

IV. DETERMINISTIC APERIODIC BINARY PT-SYMMETRIC 
GRATINGS 

For our analysis we consider the example of an ORM grating. 
In contrast to the BDC method the duty cycle is the same for 
every grating cell. It is the cell length that varies along the 
grating. In order to find the variation of the grating coupling 
strength it is necessary to consider two consecutive cells 
forming a genuine period: 

 
Λi = Λ+∆  and  Λi+1 = Λ – ∆    (5) 

 
As represented in Fig. 4(c) Λ is the period (cell) length for a 
uniform grating and ∆ is the added cell-to-cell modulation. By 
analogy with the BDC method the local grating modulation 
ratio can be defined as: 
 

�i = ∆i / 2�        (6) 
 

The mean coupling coefficient obtained through 
straightforward calculation for one period (two cells) is then: 

 

21 1
~ 1 cos cos

2ORM

π πεχ
π π
� �∆� � � �+ =� � � �� �Λ� � � �� �

   (7) 

 
Since for ORM it is only the period that varies but the nH 

/nL duty-cycle remains fixed, the extension of this method to 
the PT-symmetric case is straightforward. As shown in Fig. 
7(b) for each grating period the PT-symmetric profile is 
introduced absolutely in the same manner as for a uniform 
grating [Fig. 7(a)], i.e., with borders of the imaginary part 
sections pegged at the centers of the real part ones.  

 

 
Fig. 7. Schematic of PT-symmetric binary gratings. a) Uniform; b) BDC; c) 
Supersymmetric BDC. The black dotted indicates one period boundaries. 

 
To verify the efficiency of the ORM approach, we consider 

again the example of linear modulation described by Eq. (4). 
The color maps in Fig. 8(a) illustrate the spectral response 
obtained with the ORM method. It is basically very similar to 
that obtained with the supersymmetric BDC method with only 
a marginal improvement. This is due to the fact that there is 
still an important asymmetry in the modulation of the 
imaginary part of the index profile. In the considered case the 
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length of the loss sections locally experiences a stronger 
modulation as compared to the length of the gain sections. 

To solve this issue and improve performances of the ORM 
method we employ again a supersymmetric version as in Fig. 
7(c), which now doubles the period from 2� to 4�. One could 
be more general, and introduce a superperiodic grating 
structure having more replica with proper symmetries but we 
can check that the impact of one 2 � replica is already 
satisfying here. The color maps in Fig. 8(b) illustrate the 
spectral response obtained with the 4� “superperiodic” ORM 
gratings (SORM). The tail suppression of the spectral response 
is greatly improved, most clearly around the appearing “nodal 
valleys”.  

A more detailed view of the spectral response 
corresponding to the case of modulation strength |Cm|≈0.5 is 
provided in Fig. 9(a), this value being that of the tilted nodal 
“valleys” in the front side reflection panel from Fig. 8(b). The 
secondary sidelobes are suppressed by ~27 dB with respect to 
the main lobe level in the center. Furthermore, the rear side 
reflection level is also much lower. The transmission is also 
very close to that of the uniform or Hamming apodized PTBG. 
With respect to all parameters the PT-symmetric grating 
behavior is practically totally restored, and the tolerances of 
structural parameters are large. 

 
Fig. 8. Reflection and transmission spectra of binary PT-symmetric Bragg 
gratings as function of grating period modulation parameter Cm.  a) ORM 
method; b) supersymmetric ORM method. The dotted line at Cm = 0 indicates 
the position of the rigorous PT-symmetric index profile. 
 

These are not, indeed, the only advantages of the SORM 
method. As shown in Fig. 9(b), a qualitatively different flat-
hat behavior can be achieved when the modulation strength is 
|Cm|≈0.7, because we see in Fig.8(b) (left panel) that the 
central ridge splits in two  broad crests for |Cm|>0.75. Such 
kind of flat-hat behavior is highly desirable in many WDM 
applications with modern data formats. While it is naturally 
obtained with passive Bragg grating structures, it is not the 
case for their standard PT-symmetric counterparts. The 
“superperiodic” ORM thus allows restoring this highly 
desirable feature. 

 
Fig. 9. Reflection and transmission spectra of SORM apodized binary PT-
symmetric Bragg gratings. Grating modulation modulation strength a) 
|Cm|≈0.5; b) |Cm|≈0.7. 
 

V. CONCLUSION 

In the presented work we considered nonuniform PT-
symmetric Bragg gratings with a complex index profile 
modulated by a slowly varying envelope function, with the 
aim of combining the apodization techniques of classical 
Bragg gratings with the advantages of PT-symmetry such as 
unidirectionality. We demonstrated the possibility to achieve 
an efficient apodization of the PT-symmetric Bragg grating 
spectral response with a standard Hamming window function. 
To ease implementation of the apodization in real structure 
with local binary nature of the real and imaginary index 
contributions, this approach was extended to the duty-cycle 
modulated periodic or deterministic aperiodic binary PT-
symmetric gratings. The analysis leads us to propose a new 
efficient grating modulation technique labeled as the 
superperiodic off-resonance modulation method (referred as 
SORM). The undertaken approach demonstrates that many 
conventional techniques previously developed for passive type 
Bragg gratings or related devices can be transposed and 
adapted to a PT-symmetric case, provided the constraints of 
real and imaginary part modulation are properly combined. 
This approach indicates a likely perspective for fostering a 
new generation of active photonic devices. 
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