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Optimal PT  -symmetric switch 
features exceptional point
Anatole Lupu , Vladimir V. Konotop   & Henri Benisty

We consider the optimization problem of least energy-cost path in open systems that are described 

PT-symmetric coupler performing a binary transfer function. We bring evidence that the gain-loss 

is conserved at every point along the PT
corresponds to a practically important case of optical switching operation achieved with minimal 

PT-symmetric couplers 

fabrication imperfections. This opens new prospects for functional applications of PT-symmetric devices 
in photonics.

PT -symmetry and optimization
The concept of parity-time (PT ) symmetric Hamiltonians, introduced in the seminal paper by Bender and 
Boettcher1, quickly became a new paradigm in the theory of quantum systems2,3. It is also currently being 
extended to a variety of physics branches tackling linear and nonlinear wave physics4. Optics became a preferred 
playground for such extensions. It offered the systems of choice to emulate the equivalent of the complex-valued 
potential thanks to optical gain and losses of macroscopic photonic systems: specifically, balanced gain and loss 
can realize PT -symmetry, as was first suggested in5 and experimentally investigated in the following years6–8.

The use of PT -symmetric9, and even of more general non-Hermitian10,11 Hamiltonians, offered new insights 
into solution of the quantum brachistochrone problem12 (fundamentals of the theory remaining a debatable 
issue13). In classical physics the brachistochrone or shortest-time-delay problem is the well-known example of 
optimization problems14. Formally, its quantum version could lead to arbitrarily small evolution times between 
specific states (in a realistic situation physical constraints impose a lower bound for the transmission time, see 
e.g15.). The vanishing optimal passage time was conjectured in16 to be a general feature of non-Hermitian systems 
related to the existence of an exceptional point, which is the point of the coalescence of eigenvalues and eigen-
functions of the operator15,17.

Optimization problems of different kinds arise in non-Hermitian optics, notably because of the importance of 
energy minimization constraints. Energy costs are a general concern, increasingly so for the management of 
optical networks. Indeed, the application that we shall consider is an optical switch18–20 aimed at routing optical 
data. It is logical to wonder whether one can minimize the “cost” of operating a PT -symmetric switch. In this 
Letter, we lay the problem as an optimization problem that spans both non-Hermitian and conservative 
(Hermitian) operators, a new class of problems. Our cost is the total gain needed to achieve switching, i.e. the 
integral ∫ γΓ =

−
z dz( )

L
L

c

c  of the local gain γ ≥z( ) 0, specified below, between the two ends of the device ±Lc.

Model and mathematical optimization of a PT -symmetric coupler
We consider two scalar fields q1 and q2 propagating in two coupled waveguides, one with gain and the other with 
balanced losses. The first and second waveguides are respectively subject to gain and loss, which are varying in 
space and described by a non-negative function γ ≥z( ) 0. Thus we deal with the system:
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κ γ κ γ= + = −iq q i z q iq q i z q( ) , ( ) (1)1 2 1 2 1 2

where an overdot stands for the derivative with respect to z and where κ is the coupling constant. At constant gain 
and losses the system (1), intensively studied for more than two decades, see21, represents the simplest discrete 
PT -symmetric system, which describes coupled beams in waveguides with a complex Bragg grating22,23, two 
coupled waveguides each one having gain and losses24, or two coupled waveguides with gain and loss6,25 or with 
unbalanced losses as in the first experiments on PT -symmetry in optics7,8 (see also4). The model (1) was also 
considered with gain and losses varying along the propagation distance: pulse switching on localized 
gain-and-loss elements26, level crossing in a two-level system subject to periodically varying gain-and-loss27, par-
ametric oscillations in locally PT -symmetric systems28, statistics of the field distribution in a coupler with ran-
domly varying gain and losses29.

Before going into details of the analysis, we notice that the optimization results presented below are also valid 
for a more general system with still κ γ= +iq q i z q( )1 2 1 1, κ γ= −iq q i z q( )2 1 2 2 where however gain γ ≥z( ) 01  and 
losses γ ≥z( ) 02  are not equal, i.e. γ γ≠z z( ) ( )1  or γ γ≠z z( ) ( )2 . Indeed, denoting γ γ− =z z g z[ ( ) ( )]/2 ( )1 2 , and 
introducing ∫ γ ζ γ ζ ζ= −

−( )q q dexp [ ( ) ( )]j j L
z1

2 2 1
c

, one can verify that q1,2 solve the system (1) with γ =z( )  
γ γ+z z[ ( ) ( )]/21 2 .

We are interested in the system (1) from the point of view of a switching device18,19,26,30. Traditionally, a four 
port device such as a switch is used either in the so-called bar state or in the cross state31. To tackle the operation 
of such a device in a more general language, we consider the fate and evolution of the input “binary” state 
|↑〉 = (1, 0)T  [T stands for the transpose and ket and bra vectors are used for q q( , )T1 2  and ⁎ ⁎q q( , )1 2 ] along a 
non-uniform PT -symmetric system (1). Thus we consider the case when the input energy is applied to the active 
waveguide. We want the output of the device = +z Lc to be either |↑〉 [bar state, see Fig. 1(a)] or |↓〉 = ϕe(0, )i T 
[cross state, see Fig. 1(b,c)].

We first choose to set the bar state (|↑〉 output) as corresponding to the passive case, without gain or loss. Then 
we recover at the output the same signal if the coupler length obeys π κ=L /2c , which binds both parameters 
together. Thus, this also defines that the device length in our optimization problem is 2Lc. Under this constraint, 

Figure 1. Schematic representation of (a) the passive coupler of the length 2Lc providing the bar state 
operation; (b) the uniform PT -symmetric coupler of the same length providing the cross-state operation; (c) 
the optimal coupler operating in the cross-state, which consists in combination of the two conservative 
segments connected by the PT -symmetric segment (dashed areas). The lower panels in (b) and (c) illustrate the 
energy costs in a form of the area integrals.
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the “cross” state (|↓〉 output) can then be achieved by introducing gain and loss in the system and we remind that 
our goal is to optimize Γ.

For a constant γ, in the unbroken PT  symmetric phase1,2,4,18,19,30, i.e., γ κ< , we have two different real prop-
agation constants β1,2 for the two supermodes (eigenmodes). They evolve like βi zexp( )1,2 , so that the beating 
length is inversely proportional to the difference β β κ γ− = −22 1

2 2 . As evidenced in18, for such an uniform 
PT -symmetric coupler, the amount of light amplification needed to achieve the switching operation is 

πΓ ≈ . ×0 6765 2unif , corresponding to the amplification level of Γ = .18 5unif
10
ln10

 dB.
Now we look for the function γ z( ) ensuring the mapping |↑〉 → |↓〉 such that the energy cost described by Γ is 

minimal (we emphasize that a priori we do not require the PT -symmetric phase to be neither broken nor unbro-
ken). To this end we define the Stokes components = | | + | |S q q0 1

2
2
2, = +⁎ ⁎S q q q q1 1 2 1 2, = −⁎ ⁎S i q q q q( )2 1 2 1 2  and 

= | | − | |S q q3 1
2

2
2, obeying the relation = + +S S S S0

2
1
2

2
2

3
2. In our case gain and loss do not affect the conserva-

tion of the S1, i.e. =S 01  (what is verified by the direct differentiation). Taking into account these properties, it is 
convenient to introduce the normalized Stokes components =s z S z S z( ) ( )/ ( )2 2 0  and = −s z S z S z( ) ( )/ ( )3 3 0 , which 
obey the equations

κ γ γ κ= + = − − + .s s z s s s s z s2 2 ( ) , 2(1 ) ( ) 2 (2)2 3 2 3 3 3
2

2

and satisfy the boundary conditions

± = = ± .s L s L( ) 0 ( ) 1 (3)c c2 3

Furthermore, since ≡S z( ) 01 , we verify that for the PT -symmetric coupler (1) the relation + =s s 12
2

3
2  holds. 

This allows us to reduce the problem to the sole equation for the “phase” φ π∈z( ) [0, ] defined by 
φ=s z z( ) sin[ ( )]2  and φ=s z z( ) cos[ ( )]3 :

φ γ φ κ φ φ π= − + − = = .z L L2 ( )sin 2 , ( ) 0, ( ) (4)c c

Eq. (4) is also known as an overdamped pendulum (where z plays the role of time) driven by a constant force 
κ and having a time-dependent amplitude of the periodic potential given by γ(z). This yields another physical 
interpretation of the formulated optimization problem: finding the dependence of the amplitude of the periodic 
potential shifting the overdamped pendulum’s phase by π during the given “time” 2Lc with the least possible Γ.

Let us first concentrate on the extremal γ(z) ensuring an extremum of Γ (as the second step we will prove that 
the profile found is indeed a minimum). To this end we notice that γ(z) can be directly expressed through φ z( ) 
from Eq. (4) and define an auxiliary cost one-parametric family according to the integrals ∫Γ =ε ε−

dz
L
L

c

c , where

φ̇ κ
φ

γ≡
⎛

⎝
⎜⎜⎜⎜
− + ⎞

⎠
⎟⎟⎟⎟

≡ε
ε

ε

ε
ε

+
+z

z
z( ) 2

sin[ ( )]
[ ( )] ,

(5)

1
1

ε is a positive parameter and we introduced the notation φε z( ) for the extremal, i.e. for a solution of the problem 
(4) minimizing Γε. We verify that Γ ≤ Γε ε

ε
ε+ +L(2 )c

/(1 ) 1/(1 ) for any positive ε [it follows from the Hölder inequal-
ity], i.e. in units such that 2Lc is unity, the energy cost integral is less than the cost integral Γε independently on ε. 
Further, we observe that Γ → Γε  in the limit ε → 0. This allows us to concentrate on this last limit. Then the 
equation for the extremal Γε is obtained as a solution of the Euler-Lagrange equation φ φ∂ ∂ = ∂ ∂ε εd dz L L( / )( / ) / .

The usefulness of the above generalization (to nonzero ε) stems from the fact that at ε = 0 the Euler-Lagrange 
equation takes the form φ φ =cos /sin 00

2
0  and can be satisfied only by the constant φ π≡ /2ex  and thus does not 

have the extremal φ z( )0  with the fixed boundary points of (4). Therefore, to find φ z( )0  [and consequently γ z( )] we 
turn to the minimization problem for Γε.

Before proceeding, we notice that φ π≡ /2ex  on the one hand corresponds to the state | 〉 = −x ie (1, )T possibly 
within a phase factor, and is only possible for the exceptional point, i.e. when γ κ≡z( )  on some interval of z.

For ε > 0, the extremal φε can be found directly from the “Hamiltonian” [computed as H L φ= ∂ ∂ε ε( / ) 
φ − ε]:

φ κ εφ κ φ= + −ε ε
ε

ε
ε
ε

+( 2 ) ( 2 )/sin (6)1

which is z-independent. Since φεsin( ) cannot identically vanish, ε is a finite constant. However, this sine has to 
vanish at boundaries, and we can exploit this to deduce the form of the extremal solution. Considering the limit 
→ ±z Lc and using the fixed point boundary conditions for φ [see (4)] we obtain that the only way for (6) to be 

finite in spite of the vanishing denominator is that φ κ± =−ε L( ) 2c  and more precisely that φ κ φ+ ∼ε
ε ε

ε
+( 2 ) sin1 . 

This leads to an important conclusion: for the gain-and-loss minimizing the gain and loss must be zero at the 
input and output of the coupler, i.e. γ ± =L( ) 0c  for any ε > 0. Furthermore, supposing near the ends of the cou-
pler γ ∼ νz L( )c  where ν > 0 [i.e. excluding distributions γ z( ) approaching zero beyond all orders, as experi-
mentally not feasible] we obtain the asymptotic ∼ε

εν−H z L( )c
1 at → ±z Lc, what is possible only at ν ε= 1/ . 

Thus the solution γ z( ) of the optimization problem must decay faster than any positive power of z L( )c .
Thus, taking into account the PT -symmetry of the problem, the gain-and-loss distribution we are interested 

in is symmetric with respect to =z 0 and at ε = 0 obeys the property γ ≡z( ) 0 at ∈ − − + ∪z L L[ , ]c c  
−L L[ , ]c c  (below in Methods, we present a proof that to fulfill the condition of binary states at the input and 

L L
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output, the gain and loss distributions must be symmetric). In other words the device we are interested in must 
start and end up with conservative elements, whose length  is to be found. Another important consequence of 
the assumption about conservative propagation close to input and output is that =ε 0, which is in apparent 
contradiction to the non-conservative propagation along the interval ∈ −z [ , ]. This contradiction is resolved 
if we allow γ z( ) to be a discontinuous function. Indeed, in this case we have that ∫ γΓ =

−
z dz( )  which must be 

minimized now in the interval ∈ −z [ , ], with the fixed boundary conditions that can be chosen different form 
those defined in (4). This last problem, was already solved above when considering ε = 0: the extremum is 
achieved by the constant γ κ=  corresponding to the exceptional point. To this end, however we have to ensure 
that the conservative parts at the input and output of the coupler perform the transformations |↑〉 → | 〉ex  and 
| 〉 → |↓〉ex . To resolve this last issue it is enough to choose = L /2c , which defines the length of the conservative 
parts, and sets that of the PT  symmetric part as Lc.

Finally, the gain-and-loss distribution reads

∪γ
κ

≡
⎧
⎨
⎪⎪
⎩⎪⎪

∈ − −
∈ −

z z L L L L
z L L

( )
0, at [ , /2] [ /2, ]
, at [ /2, /2] (7)

c c c c

c c

what corresponds to πΓ = Γ = /2opt . This distribution is illustrated in Fig. 1(c).
To complete the solution of the minimization problem we only need to show that the extremal solution does 

correspond to the minimum of Γ. Since, the conservative parts correspond to zero costs, to prove that γ achieves 
its minimum on (7) we first consider small deviations of the length and the strength of the PT -symmetric seg-
ment. These deviations are not arbitrary, however, but must respect the continuity of the field φ z( ). We drop 
tedious but straightforward algebra and just indicate the result. Characterizing a small deviation of γ from the 
exceptional point value κ by δ, which is defined through the relation γ κ δ= −1 , we obtain δ= +L/ 1/2c  
that gives π δ δΓ Γ = + +/ 1 /24 ( )opt

2 2 4 , i.e. the extremal solution found in (7) indeed provides the minimal 
value for the energy costs.

Discussion
What has the optimization brought us? The gain-loss distribution [Fig. 1(c)] found through optimization proce-
dure corresponds the lowest amount of cumulated gain required for switching operation. We get the switching 
operation for only 0.5 × 2π. The remarkable point is that in contrast to the case of uniform PT -symmetric cou-
pler, the switching operation is obtained for ≈5 dB lower amplification level (from 18.5 to 13.6 dB), thus, for 
practitioners, a diminished optical amplification by a factor more than three.

The Taylor expansion used for the analytical proof of the minimum also hints at the tolerance, which is the 
practically relevant characteristic, for an actual device design. We address the issue numerically, by calculating 
with conventional coupled mode theory the amplification required for switching for various values of the param-
eter  defining the lengths of the passive and PT  symmetric section of the switch. The results displayed in Fig. 2 
show that there is a broad minimum around the optimal value = L /2c . The numerical data reproduce the quad-
ratic dependence predicted by theory with the coefficient π ≈ ./24 0 411232 . In terms of parameter tolerance, we 
find that we increase the figure of merit Γ by only 0.5% (0.065 dB) when we change  by 10%. Our switch device 
should thus be very tolerant, in terms of optimality, with respect to most fabrication imperfections commonly 
encountered in integrated optics.

Mathematical estimates of field perturbations due to imperfections of the PT -symmetric segment show that 
they do not exceed values of order of ~26 μ/κ (see Methods below), with μ defined as the largest deviation of 

Figure 2. The relative total amplification Γ Γ/ opt vs. normalized length of the PT -symmetric segment. The inset 
shows the parabolic behavior near the optimal value Γopt.
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parameters from the exceptional point values: μ κ κ γ γ= | − | | − |z zmax { ( ) , ( ) }z  for arbitrarily shaped devia-
tions of κ z( ) and γ z( ) from their average values κ and γ.

It is insightful to visualize the field distribution inside the switch for situations around the optimal one. We 
display in Fig. 3 a colormap of S0 as a function of normalized coordinate z L/ c  and fractional length of PT
-symmetric segment L(2 )/(2 )c  in the cross state (when parameters are such that the output is |↓〉). In general, the 
energy is not conserved in the central segment. A large swing of the energy appears notably in the case = Lc, 
corresponding to the case of the uniform PT -symmetric coupler, with S0 gently peaking above 3 at =z 0, due to 
one component being boosted during the transit. The optimal trajectory, remarkably, corresponds to the energy 
conserving case =S 10 : we see that the overshoot of S0 vanishes in the optimal state. If we reduce  further, a con-
verse trend occurs on S0, as the waveguide amplitude boosted in the central segment is now the other one com-
pared to the case < Lc. So we have the coincidence of optimality, energy conservation, and operation of the 
coupler’s central part in the exceptional point regime.

Having looked into the device “inner” behavior, let us come back to the global view of our optimization prob-
lem. One might first wonder why we chose the optimization of the gain-and-loss profile, rather than optimization 
through the coupling constant. We checked that it is achievable, but the optimum leads to infinities for κ (Dirac 
distributions) not tractable in a feasible device.

Next, let us underline the remarkable properties of the obtained optimization. Firstly, it is achieved by combi-
nation of conservative and non-Hermitian evolution of the field. Secondly, in both conservative and PT -symmetric 
parts, propagation occurs with conserved energy, i.e. with a constant Stokes component S0. Thus the optimal cou-
pler, requiring the minimal energy costs contains the conservative parts performing transformation between the 
input (output) binary states and the internal state, which is conserved at the exceptional point, this phase “freez-
ing” being ensured by the PT -symmetric section. Thirdly, the optimal non-Hermitian evolution has to occur 
right at the exceptional point of the device which preserves the state along the evolution and thus ensures the 
required freezing of the phase difference needed for the cross state in the central part. Here, there is a 
counter-intuitive aspect as on the one hand, the exceptional point is a point of maximal eigenvalues sensitivity to 
system parameters, but on the other hand, in our combination of conservative and PT -symmetric structure, 
there is a large design tolerance as discussed above. From the argument of phase freezing, we can also infer that 
the obtained operation principle holds for longer devices >L Lc, using “freezing sections” of adequate length to 
ensure both bar and cross states, but defining the figure of merit is less obvious.

To conclude, the optimization problem as considered here goes beyond the standard class of 
brachistochrone-like problems (quantum or classical). Our considerations are not restricted to PT -symmetric 
systems that occupy an intermediate position between Hermitian and non-Hermitian systems in the quantum 
case3, and between Hamiltonian and dissipative systems in the classical case4. This problem is of particular rele-
vance for really open systems, like those involving scattering and decay processes15 or the spin flipping, where 
instead of time being the figure-of-merit for the brachistochrone problem, one would consider the energy sup-
plied to the system. The connection to preparation of controlled entangled state for quantum information (see 
e.g32.) is yet another possible avenue whereby the combination with an optimization approach like ours, which 

Figure 3. S0 Stokes component as a function of position z L/ c and of relative PT -symmetric section length 
L(2 )/(2 )c , whose limits are thus the oblique lines starting at the rear corners. The line at = .L/ 0 5c  is the case of 

optimal gain-loss profile, conserving S0. The exceptional point state | 〉ex  ensures transit in the − < <z  region 
(added white dots).
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protects information in the steady state of the exceptional point, could offer several advantages for efficient quan-
tum control when operating at large rates. Finally, even in the classical statement, the considered optimization 
problem can be applied not only to optical systems as the switch exemplified above: we have already shown that it 
addresses the overdamped driven pendulum.

A common thread to these problems is the obtainment of energy minimization in controllable systems, an 
important feature in our era where the issue of taming energy costs pervades across the whole spectrum of infor-
mation technologies. We thus believe that the combination of non-Hermitian Hamiltonians with conservative 
ones will address an increasingly large class of relevant physical problems as well as their practical applications.

Methods
Above we argued qualitatively that weak imperfections of the coupler, which affect the exact matching of gain and 
losses and result in a shift of the system from the exceptional point in the parameter space, do not significantly 
affect the energy cost integral. We also addressed the gain and losses distributed symmetrically with respect to the 
input and output of the coupler. In this Section we present mathematical proofs of both claims.

First of all, we justify mathe-
matically that the required input and output signals imply a symmetric distribution of the gain and loss profiles. 
To this end we rewrite system (1) in a form

χ κ γ
γ κ

χ χ
χ

χ
=
⎛

⎝
⎜⎜⎜ −

⎞

⎠
⎟⎟⎟⎟

=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
≡
⎛

⎝
⎜⎜⎜

−
+
⎞

⎠
⎟⎟⎟⎟

d
dz

i z
z i

z
z
z

q q
q q

( )
( )

, ( )
( )
( ) (8)
1

2

1 2

1 2

When κ is considered as a formal spectral parameter the system (8) becomes the well-known as 
Zakharov-Shabat spectral problem33. The column-vector χ must satisfy the boundary conditions

χ χ− =
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
⎛

⎝
⎜⎜⎜
− ⎞

⎠
⎟⎟⎟⎟

ϕ

ϕ

ϕ

ϕ

−

−
L e

e
L e

e
( ) , ( ) ,

(9)c
i

i c
i

i

where ϕ2  is a real constant, which is a constant phase shift between the output and input signals. Obviously, these 
conditions correspond to the input |↑〉 and |↓〉 binary states at the input and output.

Let us now extend our coupler beyond the interval −L L[ , ]c c  by pure conservative arms (alternatively one can 
consider the limit → ∞Lc  with γ →z( ) 0 at | | → ∞z ). Since γ ≡z( ) 0 at | | >z Lc, we can consider the Jost solu-
tions defined by the asymptotics

Φ →
⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟ Φ →

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ → −∞ Ψ →

⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟ Ψ →

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ → +∞

κ

κ

κ

κ− −
e

e
z e

e
z

0
, 0 , ;

0
, 0 ,

(10)
i z

i z
i z

i z1 2 1 2

The Jost solutions are connected by the the transfer matrix

ϕ κ
ϕ κ ϕ κ
ϕ κ ϕ κ

=
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

∗ ∗
T a b

b a
( , ) ( , ) ( , )

( , ) ( , ) (11)

through the formula Φ = Ψ + ΨT Tj j j1 1 2 2 where Tji with =i j, 1, 2 are the entries of T. Since a pair of the Jost 
solutions represents a complete basis, there exist coefficients α, β, σ and δ, such that χ α β σ δ= Φ + Φ = Ψ + Ψ1 2 1 2. 
Considering this last expression at = ±z Lc one readily finds the relations

σ α δ β= = = − =ϕ κ ϕ κ+ −⁎ ⁎e e, (12)i L i L( ) ( )c c

Furthermore, since | | − | | =a b 12 2 , expressing Ψj through Φk in the formula for χ, one finds that the compat-
ibility of all the relations require

σ σ δ δ= − = −⁎ ⁎ ⁎ ⁎b b b b( ) and ( ) (13)2 2 2 2

These last two conditions impose the constraint on the phase mismatch, requiring ϕ ϕ π= = n/4n . Finally we 
make use of the imposed condition κ π=Lc , as well as the symmetry relation of the coefficient ϕ κb( , )n  with 
respect to the change of the sign of κ34, and obtain

ϕ κ ϕ κ ϕ κ= − = − .⁎b b b( , ) ( 1) ( , ) ( , ) (14)n
n

n n

From this formula and using Theorems 5 and 6 from34, we conclude that the required switch between the 
binary states with the phase difference ϕ π= ++ p2 ( 1/2)p2 1  the gain-loss coefficient γ z( ) must be even, 
γ γ= −z z( ) ( ), while for the phase difference ϕ π= p2 p2  the gain-loss profile must be odd, γ γ= − −z z( ) ( ).

On limited impact of imperfectnesses. To estimate the general effect of weak imperfectnesses we 
observe that the PT -symmetric part of the coupler, where the matching problem can occur, occupies a symmetric 
segment of length L2 c (as proven above). Next, we make use of the coupler equations (1) in the PT -symmetric 
section when operating at the exceptional point (κ γ= ). They can be rewritten in the matrix form
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κ= =
⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟ =

−
.˙ ( )i H

q
q H i

iq q q, , 1
1 (15)0

1

2
0

We also use the fact that the signal impinges at the PT -symmetric part of the coupler in the state

= − iq (1, ) (16)
T

0

(possibly with a pure phase factor). Notice that for the sake of convenience hereafter we shifted the origin: we 
consider the coupled waveguides located on the interval ∈z L[0, 2 ]c , instead of −L L[ , ]c c  used above.

Now we assume that the system is operating not in the exact exceptional point described by H0, but that devi-
ations of the parameters, i.e. of the coupling, gain, and loss, are relatively small. We describe these deviations by a 
matrix μH z( )1 , whose entries hij may depend on z, but are bounded:

| | < = .h z i j( ) 1, , 1, 2 (17)ij

The small parameter μ 1 characterizes the strength of the imperfections. Thus, the propagation in the 
imperfect coupler, instead of (15) must now be found by solving the system

μ= = +i H H H Hq q, (18)0 1

which is fed by the initial conditions = =zq q( 0) 0.
Now we look for a solution of (18) in the form of the expansion μ= + +q q q0 1  In the leading order of μ 

we have =q 00  and =H q 00 0 . In the first order we compute

= + = = .i H H zq q q q, ( 0) 0 (19)1 0 1 1 0 1

This equation is readily solved. Using the notations = −f z h ih( )1 11 12, and = −f z h ih( ) ,2 21 22  as well as 
= q qq ( , )T1 11 21 , we write down the solution in the form

∫ ∫ ∫
∫ ∫ ∫

κ

κ

= − −

= − −

q i dy dx if x f x i f x dx

q dy dx if x f x i f x dx

[ ( ) ( )] ( ) ,

[ ( ) ( )] ( ) (20)

z y z

z y z
11 0 0 2 1 0 1

21 0 0 2 1 0 2

Taking into account (17), we deduce that | | ≤f 21,2 . Hence the last formulas yield the estimates: | | |q q,11 21 
κ| ≤ + .z z2 22

Thus, independently of the particular type of z-dependent perturbation of the exceptional point matrix H0, the 
maximal possible relative downstream perturbation of the solution q0 (or | 〉ex  state introduced in the main text) 
at the input of the PT -symmetric segment, does not exceed the value

μ κ π π μ
κ

μ
κ

+ = + ≈ .L L4 (2 1) 2( ) 26 022 (21)c c
2

at the output (here we use that π κ=L2 /c ).
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