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Radiative heat transport mediated by near-field interactions is known to be superdiffusive in dilute, many-body
systems. Here we use a generalized Landauer theory of radiative heat transfer in many-body planar systems to
demonstrate a nonmonotonic transition from superdiffusive to ballistic transport in dense systems. We show that
such a transition is associated to a change of the polarization of dominant modes. Our findings are complemented
by a quantitative study of the relaxation dynamics of the system in the different regimes of heat transport. This
result could have important consequences on thermal management at nanoscale of many-body systems.

DOI: 10.1103/PhysRevB.97.035423

I. INTRODUCTION

The theory of near-field radiative heat transfer has for
many decades remained largely limited to two-body systems
[1–6]. Recently, heat transport in many-body systems has
also been considered in the context of nanoparticles [7–10]
and multilayer geometries, such as photonic crystals [11,12]
and hyperbolic metamaterials [13–15]. The focus of much
of this work has been the study of systems in which the
steady-state temperature distribution of a set of internal bodies
is a priori known and dictated via contact with large heat
reservoirs. There are, however, situations in which a full study
of heat transport necessitates an account of thermal relaxation
through radiative channels. A first step in this direction has
been made by generalizing Rytov’s theory of fluctuational
electrodynamics to describe radiative transfer in many-body
geometries with varying temperature distributions, includ-
ing nanoparticle systems [16–18], multilayer configurations
[19–28], and more generally, arbitrary geometries that include
the possibility of inhomogeneously varying temperature pro-
files [29,30]. Furthermore, so far, only a superdiffusive regime
of heat transport has been observed in systems purely driven
by thermal radiation and, in particular, only in nanoparticle
systems within the dipolar approximation [31].

In the present work, we employ a recently developed, exact
theoretical framework [32] to investigate near-field radiative
heat transport in N -body systems consisting of parallel planar
slabs separated by vacuum, in which radiation is the only
source of thermal relaxation. Here we restrict our discussion
to polar materials, where the screening is weak enough to
permit a long-range coupling between the constituent parts
of the system. We show that the temperature dynamics and
steady-state profile of the system depend strongly on geometric
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parameters such as the system density, which imply different
heat-transport regimes. In particular, we prove the existence of
a nonmonotonic transition between a superdiffusive regime,
previously observed in Ref. [31], and a ballistic regime that
appears in denser media and that also leads to dramatically
faster relaxation dynamics. We also show that this transition is
associated with a change in the polarization of the dominant
modes in the transport. In contrast to heat exchange in two-
body geometries, where near-field heat transfer is dominated
by transverse-magnetic (TM) modes, we found that transport in
dense, many-body systems can have a significant contribution
from transverse-electric (TE) modes.

The rest of the paper is organized as follows. In Sec. II,
we introduce the system under consideration and discuss a
procedure to characterize the regime of heat transport. In
Sec. III, we study the relaxation dynamics of the system for
different configurations. For comparison purposes, in Sec. IV,
we evaluate the large-distance behavior of the heat-transfer
coefficients in a metal. Finally, our conclusions are summarized
in Sec. V.

II. HEAT TRANSPORT REGIMES

Let us consider a system composed of N planar slabs
separated by vacuum, orthogonal to the z axis and assumed
to be infinite in the x and y directions, as sketched in Fig. 1(a).
The thicknesses δj of the bodies are assumed to be equal,
δj = δ for j = 1, . . . ,N , and below we take δ = 200 nm. The
temperatures of slabs 1 and N , referred to as external slabs, are
held constant at T1 = 400 K and TN = 300 K, respectively,
via contact with an external reservoir, while all the other
internal slabs are allowed to reach their own equilibrium
temperature T

eq
j (j = 2, . . . ,N − 1). We also consider that

the system is immersed in an environment (thermal bath) at
temperature T0 = TN+1 = TB = 300 K. Below D denotes the
distance between slabs 1 and 2, as well as slabs N − 1 and
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FIG. 1. (a) Schematic of an N -body system comprising N − 2
planar slabs (purple) interacting with one another and with two
external slabs at fixed temperatures T1 (red) and TN (blue). All internal
separation distances d are identical while the coupling to the external
thermostats depends on the separation distance D. In the steady
state, each internal slab reaches a local equilibrium temperature T

eq
j .

(b) Steady-state temperature profile as a function of the normalized
position zj /zN for a system of N = 60 SiC slabs of thickness 200 nm,
for different d and fixed D = 500 nm. The inset shows the ratio of
the effective internal conductivities κj/κ1 (see text).

N , whereas d is the distance between adjacent, internal slabs.
Furthermore, in our numerical simulations we assume that all
the bodies are made of silicon carbide (SiC), whose permittivity
at frequency ω can be described by the Drude-Lorentz model
[33]

ε(ω) = ε∞
ω2

L − ω2 − i�ω

ω2
T − ω2 − i�ω

, (1)

where ε∞ = 6.7 is the high frequency dielectric constant,
ωL = 1.83 × 1014 rad/s is the longitudinal optical phonon
frequency, ωT = 1.49 × 1014 rad/s is the transverse optical
phonon frequency, and � = 8.97 × 1011 rad/s is the damping
rate (for comparison purposes, in Sec. IV we also consider
gold slabs). As shown in Ref. [32], the net radiative flux per
unit surface received by any given slab j can be written as a
sum over the energy exchanged with every other body ϕ�,j ,
with

ϕj =
∑
� �=j

ϕ�,j =
∑
� �=j

∫ ∞

0

dω

2π

∫ ∞

0

dk

2π
k

∑
p

h̄ω n�,jT �,j , (2)

where � �= j runs from 0 to N + 1 (including the external
environment). In this expression p = TE,TM denotes the
two polarizations, k is the parallel component of the wave
vector, and n�,j ≡ n� − nj , with nj = (eh̄ω/kBTj − 1)

−1
denot-

ing the Bose distribution. The Landauer coefficient T �,j =
T �,j (ω,k,p), which can vary between 0 and 1, describes the

contribution of each mode (ω,k,p) to the energy exchange
and depends on the geometrical and material properties of
the slabs [32]. The local equilibrium temperatures T

eq
j of the

internal slabs can be calculated by requiring that in the steady
state, the net flux received by each slab is zero, that is by
solving the system of transcendental equations, ϕj = 0 for
j = 2, . . . ,N − 1. The steady-state temperature profiles inside
the system are shown in Fig. 1(b) for N = 60 slabs and for
several separation distances d ∈ {5,40,500} nm and fixed D =
500 nm. We first observe that, while for d = D = 500 nm the
temperature profile decays smoothly, the configurations having
a smaller d reveal a more dramatic jump between the external
and the adjacent (T2,TN−1) temperatures, in which case the
internal slabs become much more thermally isolated from the
reservoirs. Moreover, the shape of the profile clearly depends
on d, becoming nonlinear for d = 500 nm, close to linear for
d = 40 nm, and nearly constant for d = 5 nm.

We now describe how the main features characterizing heat
transport in this geometry, i.e., the temperature profile near the
boundary and within the bulk, depend on both D and d. As
far as the former is concerned, the main parameter of interest
is the relative coupling strength of boundary versus internal
slabs, quantified by defining an effective, thermal conductivity

κj = ϕj,j+1dj

(Tj − Tj+1)
, (3)

where d1 = dN−1 = D and dj = d for j = 2, . . . ,N − 2. The
ratio κj/κ1, which can be interpreted as a measure of the
boundary thermal resistance, is plotted in the inset of Fig. 1(b),
showing that κj is almost constant within the chain of internal
slabs and that κj/κ1 is close to unity for d = 500 nm, increases
with decreasing d, and reaches two orders of magnitude when
d = 5 nm. As illustrated in Fig. 3 below, the smoothness of the
temperature profile near the boundary only depends on the ratio
d/D. We next focus on the shape of the temperature profile
within the bulk, which is closely related to the transport regime
and requires a more nuanced description of the problem.

As shown in Ref. [31], to understand and classify the various
transport regimes in this kind of system, it is useful to study
the power exchanged between layers in the limit of large N .
For convenience, we make the simplifying assumption that
the temperature differences involved in the system are small
enough to allow a linearization of n�,j . Under this assumption,
the net flux on slab j reads,

ϕj �
∑
� �=j

h�,j (T� − Tj ), (4)

where we have introduced the heat-transfer coefficients,

h�,j =
∫ ∞

0

dω

2π

∫ ∞

0

dk

2π
k

∑
p

h̄ω
∂nj

∂Tj

T �,j . (5)

Assuming that h�,j ∼ 1/z
γ

�,j , for some exponent γ = 1 + α,
where z�,j ≡ |z� − zj | and zj denotes the position of the j th
layer, one finds that in the thermodynamic limit N → ∞, total
length L → ∞, and N/L fixed (see the Appendix for details),
Tj → T (z) and

ϕj → ϕ(z) ∼ (−)α/2T (z), (6)
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FIG. 2. Heat-transfer coefficients h�,j (see text) with respect to the normalized separation z�,j /zN , for fixed values of j and D = 500 nm,
and three values of (a) d = 500 nm, (b) d = 40 nm, and (c) d = 5 nm. Dashed lines indicate the asymptotic behavior of h�,j ∼ 1/z

γ

�,j at large
separations. The value of γ indicates the nature of the heat-transport regime, from superdiffusive (1 < γ < 3) to ballistic (γ → 1). The insets
decompose h�,j for j = 30 into TE and TM polarization contributions. (d) Exponent γ as a function of d .

where (−)α/2 is the fractional Laplacian defined in 1D
systems as (0 < α < 2)

(−)α/2T (z) = cα PV
∫ ∞

−∞

T (z) − T (z′)
|z − z′|1+α

dz′, (7)

with cα a constant [34,35] and where PV denotes the principal
value. As we discuss below, Eq. (7) can be used as a tool
to relate the asymptotic, large-distance behavior of h�,j to
the regime of heat transport. It follows from Eq. (7) that the
regime of heat transport is superdiffusive when 1 < γ < 3. In
the limiting case γ → 3, the fractional Laplacian degenerates
into its classical form and the regime of transport is diffu-
sive. On the other hand, as γ → 1, the fractional Laplacian
approaches the identity operator and the transport becomes
ballistic.

Figure 2 shows h�,j for multiple values of j as a function
of �, for the same system of Fig. 1. When d = 500 nm, corre-
sponding to a SiC volume fraction of 28.5% (dilute system),
h�,j asymptotically decays as 1/z2

�,j , showing that indeed the
heat transport is superdiffusive, as in simple dipolar systems
[31]. Note that the small variations in h�,j at the extreme end of
the curves come from finite-size effects and are therefore not
taken into account in the scaling analysis. When d = 40 nm
[see Fig. 2(b)], the exponent in the scaling of h�,j increases,
but the transport regime remains superdiffusive. On the other
hand, when d = 5 nm, corresponding to a SiC volume fraction
of 97.5% (dense system), h�,j ∼ 1/z�,j , in which case the

transport is ballistic and the system experiences an effectively
weak thermal resistance within the bulk. Figure 2(d) shows
γ as a function of d, illustrating a nonmonotonic behavior
as the system transitions from a superdiffusive to a ballistic
regime. Furthermore, as illustrated on the insets of Fig. 2,
which show the contributions of TE and TM modes to h�,j ,
we find that TE modes dominate and hence determine the
(ballistic) transport regime at small d; in contrast, TM modes
are the main heat carriers in the superdiffusive regime, which is
the case in typical two-body geometries involving polaritonic
resonances. This surprising result is a clear indication of the
complexities and richness of heat transport in many-body
systems. We remark that for metals at room temperature (far
from the plasmon resonance), the screening is so strong that
interactions in the structure can be effectively short-ranged. As
a consequence of the screening, the heat-transfer coefficients
may exhibit an exponential decay rather than a power-law
decay (see Sec. IV), and therefore our model for anomalous
diffusion does not apply in this case.

Figure 3 shows h�,j along with the temperature profile (in-
set) for d = D = 5 nm. Comparing the former to the results in
Fig. 2(c), one confirms that the transport regime is independent
of D and therefore only depends on the density within the bulk,
determined byd. On the other hand, comparing the temperature
profile in Fig. 3 to those in Fig. 1, one infers that indeed only
the ratio d/D (or thermal resistance) controls the smoothness
of the profile near the boundaries.
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III. THERMAL RELAXATION

We now investigate the impact of the previously consid-
ered transport regimes on the relaxation dynamics of the
system. Given an initial temperature distribution T (0) =
(T1(0), . . . ,TN (0)), the temperatures of the bodies T (t) =
(T1(t), . . . ,TN (t)) at any given time t > 0 are solutions of the
energy balance equation,

∂t T = K · T + S, (8)

where K = H/(Cδ) is a stiffness matrix defined in terms of
the heat-transfer matrixH, with elements [H]�,j = h�,j (�,j =
1, . . . ,N ), and C = 8.15 J cm−3 K−1 is the SiC heat capacity
per unit volume [36]. Here, hj,j = −∑

� �=j h�,j quantifies the
emission rate of body j in the presence of the other slabs, while
S = TB

Cδ
(h0,1 + hN+1,1, . . . ,h0,N + hN+1,N ) denotes the source

term corresponding to power supplied by the baths to each
layer. Equation (8) is simply a discrete form of the fractional
diffusion equation, the fractional exponent being related to the
scaling of h�,j , whose solution in the steady state reads

T eq = −K−1 · S = (TB, . . . ,TB). (9)

Since h�,j depends weakly on Tj , we assume that K is a time-
independent matrix, in which case the time evolution of the
temperature profile is given by

T (t) = exp(Kt) · [T (0) − T eq] + T eq. (10)

Figure 4 shows the temporal evolution of the system in
both superdiffusive and ballistic regimes, assuming an initial
temperature profile corresponding to heating of the two central
slabs to a temperature of 400 K. We observe a strong increase
of the relaxation dynamics in the ballistic regime compared to
the superdiffusive case, showing a difference in characteristic
equilibration scales of nearly three orders of magnitude (from
microseconds to milliseconds for a reduction of about half
the initial overheating). We also observe that, as previously
observed in dilute media [16], the relaxation process occurs
in two distinct timescales. First, all layers thermalize at the
same temperature through near-field interactions in about 5 ms
in dense media (seconds in the diluted case). Subsequently,
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FIG. 4. Temporal evolution of the temperature profile for a system
(N = 60) interacting with a thermal bath at TB = T0 = TN+1 =
300 K. At t = 0, all bodies have temperature TB except the two cen-
tral slabs, which have TN/2 = TN/2+1 = 400 K. (a) Ballistic regime
(D = d = 5 nm). (b) Superdiffusive regime (D = d = 500 nm). (c)
Temperature of slab N/2 as a function of time in the two previous
cases.

all layers collectively cool down to the ambient temperature
through far-field interactions with the thermal bath.

IV. HEAT-TRANSFER COEFFICIENTS FOR GOLD SLABS

In this section we analyze the heat-transfer coefficients for
the same geometrical configurations discussed previously, but
now taking gold (Au) as the material constituting the slabs.
The permittivity of Au is described with a Drude model

ε(ω) = 1 − ω2
P

ω(ω + i�)
, (11)

with plasma frequency ωP = 1.37 × 1016 rad/s and dissipa-
tion rate � = 5.32 × 1013 rad/s. The width of the bodies is
assumed δ = 200 nm, the separation distance between bodies
1 and 2 and between bodies N − 1 and N is taken as D =
500 nm, with N = 60. In Fig. 5, we show the heat-transfer
coefficients with respect to the normalized separation z�,j /zN

for fixed values of j and several values of the internal spacing
d, where, as before, z�,j = |z� − zj |. As shown in the plots, the
heat-transfer coefficients for this metal exhibit an exponential
decay at large separations, which contrasts with the power-law
behavior observed in the polar material. The reason for that is
the strong screening taking place in the metal. For this material
and under these conditions, our model for anomalous diffusion
does not apply; in this case, the radiative heat transport is
driven by effective, short-range interactions. We emphasize
that the dependence of the decay on z�,j may be different for
thinner slabs, since in this case the electromagnetic field is less
attenuated.

According to our numerical results, assuming a contin-
uous distribution of bodies, for the metal the heat transfer
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coefficients can be written as

h ∼ e−α0z, (12)

where α0 can be interpreted as an absorption coefficient. Thus,
we can define a skin depth [37]

δ0 = 2

α0
, (13)

which for bulk metals at room temperature is typically about
100 nm. In Table I, we report the values of the absorption
coefficient α0 and the skin depth δ0 for d = 5 nm, d = 40 nm,
d = 100 nm, and d = 500 nm. The values of α0 are obtained
by fitting the large-distance behavior of the heat-transfer
coefficients shown in Fig. 6(a). In Fig. 6(b), we show that d

and δ0 follow a linear relation. The expected value of δ0 for
the bulk can be obtained in the limit d → 0, which can be
extrapolated from a linear fitting [see Fig. 6(b)]. In this limit,
we get δ0 ≈ 112 nm, which is consistent with the previously
mentioned typical value.

TABLE I. Calculated values of the absorption coefficient α0 and
skin depth δ0 as a function of d for Au slabs.

d (nm) α0 (nm−1) δ0 (nm)

5 1.74 × 10−2 115
40 1.48 × 10−2 135
100 1.19 × 10−2 169
500 5.08 × 10−3 394

V. CONCLUSIONS

We have studied a many-body geometry of planar slabs
which exhibits a transition in the regime of radiative heat
transport, from ballistic to superdiffusive, with respect to slab
density. This transition has been found in a polar material,
where the screening is weak and a long-range photon-mediated
heat exchange takes place through the system. Because of the
long-range coupling, the decay of the heat-transfer coefficients
through the structure is characterized by a power law whose
exponent determines the anomalous regime of heat transport.
In many-body systems composed of metals, on the contrary,
we have shown that the heat transfer coefficients can decay
exponentially and hence anomalous diffusion is not observed.
In this case, the radiative transport is driven by short-range
interactions. Furthermore, our predictions reveal complex,
many-body effects in addition to dramatically different re-
laxation dynamics, depending on the transport regime. These
effects could have important implications for thermal manage-
ment at nanoscale in devices involving multiple, interacting
elements thermally coupled in the near field.
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fitting, leading to δ0 ≈ 112 nm.

APPENDIX: THERMODYNAMIC LIMIT

Here we perform the derivation of the energy balance
equation (4) in the thermodynamic limit which leads to Eq. (6).
We assume that the system is large enough so that we can
take the total length L → ∞ and the number of bodies N →
∞, with the linear density λ = N/L fixed. In doing so, the
positions of the bodies can be continuously described by zj →
z, and the flux, temperature, and heat-transfer coefficients
become functions of the position such that ϕj → ϕ(z), Tj →
T (z), and h�,j → h(z,z′), respectively. In addition, in the
thermodynamic limit, the summation over the bodies in Eq. (4)
can be expressed as

lim
N→∞

∑
� �=j

→ lim
N → ∞
L → ∞

N

L
PV

∫ L/2

−L/2
dz′ = λ PV

∫ ∞

−∞
dz′, (A1)

where PV denotes the principal value which needs to be used
because the sum does not include � = j . Equation (4) then
becomes

ϕ(z) = −λ PV
∫ ∞

−∞
h(z,z′)[T (z) − T (z′)]dz′. (A2)

Identifying the heat-transfer coefficients in the thermody-
namic limit from their discrete counterpart could be a difficult
task. However, here we are only interested in the asymptotic,
large distance behavior of these coefficients, namely, when
|z − z′| is large. As an ansatz, we assume that h(z,z′) = q/|z −
z′|1+α , where q is some constant and 0 < α < 2. According to
the numerical simulations shown in Sec. II, this assumption is
well justified since the system exhibits anomalous diffusion.
Therefore

ϕ(z) = −qλ PV
∫ ∞

−∞

T (z) − T (z′)
|z − z′|1+α

dz′. (A3)

Finally, introducing the fractional Laplacian (−)α/2 for one-
dimensional systems through the identity (7), the heat flux can
be written as

ϕ(z) = −qλ

cα

(−)α/2T (z), (A4)

with the constant cα = 2α�( α+1
2 )/[π1/2|�(−α

2 )|], �(x) being
the Gamma function.
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