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Abstract. We investigate the performance limits of hybrid imaging systems including annular binary
phase masks optimized for depth-of-field (DoF) extension, as a function of the number of rings and the
desired DoF range. The mask parameters are optimized taking into account deconvolution of the acquired
raw image in the expression of the global performance of the imaging system. We prove that masks with
a limited number of rings are sufficient to obtain near-optimal performance. Moreover, the best achievable
image quality decreases as the required DoF range increases, so that for a given required image quality,
the DoF extension reachable with binary phase masks is bounded. Finally, these conclusions are shown to
be robust against different optical system aberrations and models of scene power spectral density. These
results are important in practice to decide if annular binary phase masks are the relevant solution for a given
imaging problem, and for mask manufacturing, since the number and thickness of the rings reachable at
affordable cost by technology is generally limited.
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1 Introduction

Binary phase masks are wavefront encoding devices typically situated at the aperture stop

of an optical system to engineer its point spread function (PSF). They can be used to

extend the depth of field (DoF) of imaging systems without reducing the light throughput

by producing a PSF that becomes more invariant to defocus.1–3 However, the larger the

DoF the more blurred the acquired raw image so that deconvolution has to be applied.

The design of these masks has thus to take into account image processing in order to reach

the optimal compromise between invariance of PSF to defocus and capacity to deconvolve

the image. This joint design approach has been introduced by Cathey and Dowski4 for

continuous phase DoF enhancing masks, and generalized by Robinson and Stork5 to other

optical design tasks. It has been applied to the optimization of DoF enhancing phase masks
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in imaging applications1,6 and has been extended to include broad spectral ranges during

the mask selection.7,8

DoF extended imaging systems including optimized binary annular phase masks and

real-time deconvolution have been implemented successfully. In Ref.,2 the combination of

an optimized 2-ring binary phase mask with a digital deconvolution algorithm implemented

on GPU made it possible to increase by a factor 3 the depth of field of a commercial LWIR

camera with f-number equal to 1.3 and 25o field of view (FoV). In Ref.,9 the DoF of a high

definition camera (1292x972 pixels), with f-number 1.2 and 16o × 12o FoV operating in the

visible spectral range was increased by a factor 2.5 using an optimized 6-ring mask and

real-time FPGA-implemented deconvolution.

However, when designing an annular binary phase mask, there remain fundamental ques-

tions: what is the maximum depth of field reachable with such a mask? How many rings are

necessary? Are the masks robust to aberrations or spatial frequency content of the scene?

The purpose of this article is to address these issues. We show that more rings are necessary

to reach higher DoF, but augmenting the number of rings above a given amount does not

improve significantly the performance any more. Therefore nearly optimal performance is

reached with a limited number of rings. Then, we also show that the best possible final

image quality decreases as the targeted DoF range increases, showing that the reachable

DoF extension for a given image quality is bounded. Finally, we show that binary annular

phase mask imaging performance is robust to changes in the frequency content of the objects

and to small amounts of classical aberrations (spherical, coma, astigmatism). These results,

quantitatively described below, are important in practice to decide if annular binary phase

masks are the relevant solution for a given imaging problem.
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This paper is organized as follows: in section 2 we define a rigorous model of interaction

between optical design and digital deconvolution as introduced in.6 Then in section 3 we

show that optimization of binary masks for a given DoF has many local optima correspond-

ing to masks having different shapes but very similar performance. However, the number

of required rings is limited and increases slowly with the desired DoF, so that near-optimal

performance can be obtained with masks with few rings, practical examples and manufac-

turing considerations end this section. In section 4 we perform a more detailed study of the

results presented in section 3 by analyzing the performances of each phase mask over the

DoF. In section 5, we demonstrate the robustness of the optimized masks to the presence

of third order spherical, coma and astigmatism aberrations and to a mismatch between the

power spectral density of the captured object and that of the prior scene model used in the

deconvolution algorithm.

2 Principle of the co-design

Binary annular phase masks are static spatial phase modulating optical elements consisting

of a series of N concentric annular regions of phase modulation of alternatively 0 or π

radians at the nominal wavelength λ (usually chosen in the middle of the working spectral

range). Each annular constant phase area corresponds to a so-called ring, so that an N -

ring mask of clear aperture radius R is parametrized by N − 1 normalized radius values

φ = {ρ1, . . . ρN−1} where the radius of the ith phase transition is ri = ρiR and satisfies the

conditions 0 < ρ1 < · · · < ρN−1 < ρN = 1 (see Fig.1).

The hybrid imaging system that we consider in this paper consists of a lens and a binary

phase mask placed at the aperture stop, and of a digital deconvolution algorithm that post-
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Fig 1 Example of a 4-ring annular binary phase mask with ρ4 = 1. A ring is defined as an annular region
with constant phase modulation. Gray areas induce a phase of φ = 0 and white areas a phase of φ = π

radians.

processes the raw image. For this theoretical study of binary mask DoF extension limit, a

nearly monochromatic spectral range near the nominal wavelength λ is considered. We model

the optical configuration as a phase mask placed in the stop or the exit pupil of a perfect

optical system. This simple model has been shown to give valuable results in the context of

the experimental setups described in Refs.2 and.9 In Section 5, to evaluate the robustness

of this approach, we additionally introduce small amounts of third order aberrations in the

optical system.

The final image Ô(r) produced by such a hybrid imaging system is modeled as:

Ô(r) = d(r) ∗
[
hφψ(r) ∗O(r) + n(r)

]
(1)

where O(r) = I(r)− Ī(r) is the ideal sharp image minus its mean, ∗ denotes the convolution

operator, hφψ(r) is the PSF of the optical system, n(r) is the detection noise, d(r) is the

digital deconvolution filter, and r represent the spatial coordinates. We assume that the

aperture stop of the lens is circular of radius R. The PSF hφψ(r) is a function of the phase

mask parameters φ and of the defocus factor ψ defined as an optical path difference (OPD):
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ψ =
R2

2

(
1

zi
+

1

zo
− 1

f

)
(2)

where zo is the object distance (taken as positive here), zi the image distance and f the

effective focal length; please note that this equation can account for depth-of-field (zi fixed

and zo variable) or depth-of-focus (zi variable and zo fixed) for the same value of ψ. For the

sake of conciseness, all the mathematical developments are expressed using a 1D continuous

formalism to represent the finite discrete 2D one, e.g., using the integral
∫
· · · dr to represent

a finite double sum
∑L

i=1

∑M
j=i · · · over the pixels of the image. In order to evaluate the

quality of the image provided by the hybrid imaging system for a given value of ψ and φ,

we use the mean squared error (MSE) between the deconvolved image and the ideal one:5,6

MSE(φ, ψ) = E
[∫ ∣∣∣Ô(r)−O(r)

∣∣∣2 dr] (3)

where E[·] represents the mathematical expectation over the noise n(r) and the sharp im-

age O(r), which are both assumed to be zero-mean, stationary random processes of power

spectral density (PSD) Snn(ν) and Soo(ν) respectively, ν representing the spatial frequency

coordinates. Let us emphasize at this point that this criterion is able to simultaneously take

into account the residual blur of the final image and the noise amplification introduced by

the deconvolution stage, which should both be minimized in a well-balanced way in order

to get a good final image quality. Standard criteria used in conventional optical design,

such as the diameter of the spot-diagrams or the diffraction MTF, are not sufficient for

joint-optimization since they do not take image noise into account.
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From Eqs. (3) and (1), it has been shown that, in the context of hybrid imaging,6 the

MSE has the following expression:

MSE(φ, ψ) =

∫ ∣∣∣d̃(ν)h̃φψ(ν)− 1
∣∣∣2 Soo(ν)dν + ∫ ∣∣∣d̃(ν)∣∣∣2 Snn(ν)dν (4)

where the superscript ∼ denotes the Fourier transform. Our co-design goal is to find the

deconvolution filter and the mask parameters that minimize MSE(φ, ψ) over a DoF range

defined by a set of K values of ψ ∈ [ψ1, ψ2, · · · , ψK ]. In the following, the maximal value

of the DoF range is denoted by ψmax with |ψk| ≤ |ψK | = |ψmax|. For deconvolution, we use

the averaged Wiener filter that is known to minimize
∑

kMSE(φ, ψk) and has the following

expression:6

d̃(ν) =
1
K

∑K
k=1 (h̃

φ
ψk
(ν))⋆

1
K

∑K
k=1

∣∣∣h̃φψk
(ν)

∣∣∣2 + Snn(ν)
Soo(ν)

(5)

where ·⋆ stands for complex conjugate. The value of the MSE obtained for this choice of

d̃(ν) and for a given defocus ψ is denoted by MSE(φ, ψ), which leads to the definition of

the image quality:

IQ(φ, ψ) = 10 log10

(
EO

MSE(φ, ψ)

)
(6)

expressed in decibels (dB) and where EO is the energy of the scene defined as E
[∫
O(r)2dr

]
.

In order to determine the parameters of the optimal mask, φopt, we use a “maximin”

criterion. Let us define J(φ) as:

J(φ) = min
k

[IQ(φ, ψk)] . (7)
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The optimal mask profile is chosen to be:

φopt = arg max
φ

[J(φ)] . (8)

Our performance criterion for the hybrid system is finally defined as:

IQmaximin = J(φopt). (9)

Here, φopt depends only on the chosen DoF range ψmax and on the number of rings N .

Our purpose is to investigate the evolution of IQmaximin as a function of ψmax and N , in

order to determine if there is an optimal number of rings a binary phase mask requires in

order to address a given DoF range.

In sections 3 and 4, we consider that the conventional lens part is aberration-free (we only

use the first order parabolic “defocus” Seidel phase term ψρ2), whereas 3rd order aberrations

are considered in Section 5. We assume throughout this paper that n(r) is a white noise

and that the signal-to-noise ratio (SNR) on the raw image is 34 dB with the SNR precisely

defined as:

SNR = 10 log10

[ ∫
Soo(ν)dν∫
Snn.(ν)dν

]
(10)

We use a generic ideal image model with a power-law PSD10 Soo(ν) = Kν−a, with a being

fixed to 2.5 in sections 3 and 4 and slightly varied in section 5, and the constant K being

given by the SNR value assuming
∫
Snn(ν)dν = 1.
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3 Phase mask optimization

3.1 Optimization methodology

In this section we present the optimization of the ring radii φ for a given DoF range ψmax and

a given number of rings N . Since binary annular masks introduce a phase modulation of 0 or

π radians, with −π = π modulo 2π, and as the optical system is aberration-free, the value of

IQ(φ, ψ) is symmetric around the focal point ψ = 0. Thus, to save computational time, our

optical system is optimized only for positive values of ψ ∈ {ψ1 = 0, · · · , ψK = ψmax} with

the underlying assumption that the total DoF range is [−ψmax,+ψmax] around the focal

point. We consider the following values of DoF range ψmax ∈ {1.0, 1.5, 2.0, 2.5, 3.0}λ;

for comparison, a classical diffraction limited optical system is generally considered to have

a maximal wavefront error due to defocus of ψmax = ±0.25λ, according to the so called

Rayleigh’s quarter wavelength rule,11.12 The evaluation points of the DoF range are chosen

such that they are evenly spaced and that ψk − ψk−1 = 0.5λ, this step size being sufficient

to obtain the optimal mask profile for a given ψmax.

The optimization of φ is not simple since the function J(φ) (see Eq.(7)) presents several

local maxima and is highly nonconvex. This is clearly seen in Fig. 2.a, were we have repre-

sented the value of J(φ) for a 2-ring mask as a function of the radius ρ1 and for different

values of ψmax. It can be noticed that depending on the value of ψmax, there may be several

local maxima of J(φ). Moreover, these local maxima have very similar values for a given

value of ψmax in the range ψmax ∈ {2.0, 2.5, 3.0}λ. Similarly, we have represented in Fig.

2.b the variation of J(φ) for a three-ring mask as a function of ρ1 and ρ2 for ψmax = 2.0λ;

the most prominent local maxima are marked with black crosses, many of them presenting
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Fig 2 Evolution of J(φ) for (a) 2-ring masks calculated for ψmax ∈ [1.0, 1.5, 2.0, 2.5, 3.0]λ and (b) 3-ring
masks for ψmax = 2.0λ; the crosses mark the most prominent local maxima.

similar values of J(φ).

To optimize binary phase masks with a larger number of rings, a graphical representation

of J(φ) is no longer possible and therefore a global optimization algorithm is needed. We

have chosen the population-based Particle Swarm algorithm,13 which consists of a collection

of individual particles randomly placed on the solution landscape and moving through it

with a speed based on their own position, the position of the best minimum found at that

iteration and a random perturbation. After convergence of the iterative process, a gradient-

based local optimization algorithm is run to reach the nearest local maximum.

3.2 Optimization results

The randomness of the algorithm added to the complexity of the optimization problem

makes it not always possible to find the global maximum in a single optimization run. For

this reason, a large number of optimization runs, with randomly generated starting points,

were calculated in parallel on a 48 core cluster of computers, leading to up to 40 different local

maxima found, depending of the complexity of the optimization landscape. After multi-hour

9



Fig 3 Comparison of two equivalent local maxima of J(φ) obtained by optimization for 6-ring masks and
for ψmax = 2.5λ.

computations with computation time increasing with N , the best obtained masks for each

case were then selected as optimal.

We have noticed that the number of local maxima of the optimization landscape increases

along with the number of rings. It also starts to increase with the required DoF range, it

reaches its maximum value for ψmax around 2.0λ and then slightly decreases when ψmax

reaches 2.5λ as the optimization landscape becomes smoother. Similarly to the cases shown

in Fig. 2, different mask shapes with very similar J(φ) values were found. As an example,

we show in Fig. 3 two of the best masks obtained for 6 rings and ψmax = 2.5λ. These masks

have different shapes but very similar image quality. This being said, we can observe that

the last ring of Fig.3.b is very thin so that from a technological point of view the mask in

Fig. 3.a would, as discussed in section 3.3, certainly be easier to manufacture.

Some global pattern can be observed on the shapes of the optimal masks as ψmax and the

number of rings increase. In Fig. 4 we show the profiles of the optimal masks obtained for

DoF ranges ψmax = 2.0λ and 2.5λ, with 5, 6 and 7 rings each. A similar feature on all the

masks is a wide annular region between two rings at ρk−1
∼= 0.60 and ρk ∼= 0.75. We can see

that, for a given DoF, when the number of optimization parameters (rings) increases, the

masks have similar profiles with the new rings appearing after the aforementioned annular
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Fig 4 Masks optimized with (from left to right) 5, 6 and 7 rings and for DoF ranges ψmax = 2.0λ (top row)
and ψmax = 2.5λ (bottom row).

region. This can probably be related to the parabolic shape of the “defocus” wavefront error,

with the central part being relatively flat and thus not requiring to be engineered to enhance

the image quality.

As an illustration of how the masks modify the impulse response of the optical system,

Fig. 5.a shows the PSF of an aberration-free diffraction-limited system with a circular aper-

ture at different focal points. Fig. 5.b shows the PSF of the same system with a binary

annular phase mask optimized for ψmax = 2.0λ. It can be seen that the inclusion of the

phase mask largely reduces the spread of the PSF for ψ = 1λ and ψ = 2λ, and leads

to quasi-similar PSFs over the ψ range. Even though the PSFs are not strictly invariant

throughout the DoF range (as could be anticipated from the maximin optimization criterion

in Eq. (9)), they induce a similar blur in the image. The deconvolution process is thus able to

successfully restore the image quality in a similar way independently of the object distance,

as will be seen in the following sections.

11



Fig 5 Point spread function at DoF (left to right) ψ = 0, ψ = 1.0λ and ψ = 2.0λ for: (top row) an
aberration-free, diffraction-limited optical system and (bottom row) the same system with a 6-ring binary
annular phase mask optimized for ψmax = 2.0λ.

3.3 Mask performance evaluation

Let us now evaluate the changes in the performance obtained by using an increasing amount

of rings at a given DoF range. Fig. 6 represents the value of IQmaximin as a function of the

number of rings for different values of ψmax. We observe that the image quality naturally

increases as more rings are added, but rapidly levels off in all cases. When ψmax = 1.0λ,

the increase on IQ from 2 to 3 rings is of [∆IQ]2→3 = 0.92dB, a considerable gain in this

IQ range, but adding extra rings does not increase significantly the image quality. When

ψmax = 1.5λ, the last significant gain of quality happens when passing from 3 to 4 rings, but

is only of [∆IQ]3→4 = 0.55dB. The increase in performance between 3 and 4 rings becomes

larger when the DoF increases, [∆IQ]3→4 = 1.4dB for ψmax = 2.0λ, [∆IQ]3→4 = 1.8dB for

ψmax = 2.5λ and [∆IQ]3→4 = 3.0dB for ψmax = 3.0λ. This trend clearly shows a need for

extra rings as ψmax increases.
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Fig 6 Performance comparison of optimal annular phase masks with different amount of rings for ψmax ∈
[1.0, 1.5, 2.0, 2.5, 3.0]λ. The case where the number of rings is equal to 1 is equivalent to having no mask.

However, for all values of ψmax, a saturation of the performance with the number of rings

is observed. When ψmax = 1.0λ, it occurs after 3 rings and for ψmax = 1.5λ, after 4 rings.

When ψmax = 2.0λ, the behavior is slightly different, since the growth of IQmaximin slows

down gradually, until it stops at 7 rings. The case of ψmax = 2.5λ is somehow more intricate,

but, again, shows no practical IQ improvement after 7 rings.

This behavior seems to be due to the optimization landscape being the most nonconvex

and prone to local maxima at values of ψmax around 2.0λ. On the other hand, when ψmax =

3.0 λ, the IQ stops increasing as soon as with 5 rings, with a rather low IQ maximal value.

This shows that we have reached a limit on how much the DoF of a system can be extended

with an annular binary phase mask and a mean Wiener filter, regardless of how complex

that mask is.

3.4 Typical examples and manufacturing considerations

It is interesting to note that the optimal masks obtained in the previous paragraphs depend

only on the ψmax and N (number of rings) parameters. They can thus be used to extend
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the DoF of many different optical systems of different dimensions. For example, let us

consider an optical system with effective focal length f = 20mm and F-number F# =

2. If the spectral operating range is in the visible (λ = 587nm), a mask optimized for

ψmax = 2.5λ, as represented in Fig. 3, provides a depth-of-focus (DoFs) for an object at

infinity, of ∆zi = ±2(ψmax/λ)λf
2/R2 = ±8(ψmax/λ)λ(F#)2, that is ≈ 47µm. This value

should be compared to the DoFs of a diffraction limited standard lens of the same F-number

(∆zstandard = ±2λ(F#)2) of ≈ 4.7µm, showing, as expected, a tenfold increase of the DoFs,

since the DoFs of a diffraction limited standard lens corresponds to ψmax = 0.25λ according

to the Rayleigh’s quarter wavelength rule. The same generic masks of Fig. 3 could also

be used to extend the DoF of a system with longer effective focal length f = 200mm and

F# = 4. In this case, the DoFs would be ≈ 190µm while the DoFs of a standard lens of the

same F-number is ≈ 19µm.

The question is now how to manufacture these masks. Manufacturing of real masks will

strongly depend on the user’s specific application, e.g., the spectral range and the usable

materials, the pupil size of the targeted system and the cost of the manufacturing (for one

prototype or for a commercial series). Many manufacturing methods can be envisaged, such

as direct diamond turning, molding, photolithography associated with chemical, plasma or

reactive ion etching, effective index sub-wavelength patterning, among others. Each method

has its own limitations in terms of materials that can be etched, on the minimal lateral size

of the pattern that can be imprinted, on the maximum depth of the etch, and on the overall

area that can be worked at affordable cost or within a realistic duration.

Let us take an example. Consider again the f = 20mm, F# = 2 system, and a DoF

extension of ψmax = 2.5λ. The radius of the mask should thus be R = 5mm. A mask

14



with such a radius can be manufactured with many different technologies, such as diamond

turning or photolithography. Let us now assume that the mask in Fig.3.a is used: the

smallest normalized ring width is ∆ρ = ρk–ρk–1 = 0.05, which corresponds to a real width of

∆r = R·∆ρ = 0.25mm = 250µm. This value is a priori affordable by all the above-mentioned

manufacturing methods. On the other hand, the mask of Fig.3.b, which provides the same

DoF extension as the one in Fig.3.a, has a minimal normalized ring width of ∆ρ = 0.01,

which leads to an actual width of ∆r = 50µm, which is too thin for usual diamond turning

but clearly affordable for photolithography or subwavelength patterning. The generic mask of

Fig.3.a could also be used to extend the DoF of the long focal system (f = 200mm, F# = 4).

In this case, the real diameter of the mask would be 50mm, and some technologies, such

as microlithography or subwavelength patterning, would be difficult to use at an affordable

cost. On the other hand, the minimum ring width would be ∆r = 1.5mm, well within the

capabilities of diamond turning.

More generally, we have found that for ψmax ≤ 3λ and N ≤ 7, there is always a mask

with near-optimal performance having a smallest normalized ring width greater than 0.05.

They thus could all be easily manufactured for the two optical systems we have taken as

examples.

We have thus shown that the mask optimized in the previous section without any con-

straint on the minimal ring width can be manufactured and used in optical systems with

realistic focal lengths and F-numbers. However, specific constraints on ring width could be

introduced at the optimization stage if required by the manufacturing limitations for a given

application.
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4 Performance of the optimal masks through the DoF range

To understand better the behavior of the hybrid imaging system throughout the DoF range,

Fig. 7 shows the variation of IQ(φopt, ψ) as a function of ψ for the optimal masks obtained

for the DoF ranges of ψmax = 1.5, 2.0, 2.5 and 3.0λ, and for different numbers of rings.

The first observation is that, as ψmax increases from one graph to the next, all curves

get lower values for a given number of rings. This indicates that, as ψmax increases, the

problem becomes more difficult and the reachable optimal performance decreases. When

ψmax = 1.5λ, it is seen that all the curves for more than 4 rings yield a quasi-constant

performance throughout the DoF range and are almost identical. This is consistent with the

fact, observed in Fig. 6, that for this DoF range, the increase of performance levels off after 4

rings. When ψmax = 2.0λ, the variation of IQ as a function of ψ is wider; we observe a drastic

change of the curve shape between 3-ring and 4-ring masks, then the curves are smoother

and become flatter, to reach a stable behavior from 7 rings onwards. When ψmax = 2.5λ,

the performance of the 5-ring and 6-ring masks is very similar, but adding a 7th ring makes

it possible to suppress the valley around ψ = 0.72λ while following the path of the 6-ring

mask afterward; this leads to the small increase of IQmaximin observed for this value of ψmax

when going from 6 to 7 rings. When ψmax = 3.0λ, we see that the mask with 3 rings is

clearly insufficient to compensate for such a large value of the defocus, and all the optimized

masks have a similar performance after 5 rings. Finally, it is interesting to notice that in all

cases, increasing the number of rings tends to reduce the peak to valley variation of IQ(φ, ψ)

even if it does not increase considerably the minimum of IQ(φ, ψ) compared to the situation

with less rings. This fact can be of importance for some applications, and may request to
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Fig 7 Performance comparison of masks optimized for different ψmax and number of rings as a function of
ψ.

be taken into account in the whole hybrid system design.

5 Robustness of the performance

Until now, the masks and deconvolution filters were optimized by assuming a generic image

model with power-law PSD Soo(ν) ∝ ν−2.5 and an aberration-free system. To check the

robustness of our results and conclusions to these assumptions, we now evaluate the per-

formance of the masks optimized for this model on systems that possess some amount of

3rd order aberrations, or that act on images whose PSDs follow a power law with different

coefficients, or also on real-world images.
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5.1 Sensitivity to aberrations

The binary phase masks obtained in the previous section were optimized considering an

aberration-free system. If these masks were to be used in a real system, they could have

to deal with a small amount of residual aberrations additionally to the defocus. To study

the sensitivity of the mask performance to these residual aberrations, we first include in our

simulated optical system a known amount of aberrations with a wavefront error expressed

by the following Seidel terms: Ws = αρ4 for spherical aberration, Wc = βρ3 cos(θ) for coma

and Wa = γρ2 cos(2θ) for astigmatism. As a reference, a conventional optical system was

simulated to show the effects on IQ(ψ, φ) of each aberration in addition to defocus. As men-

tioned before, according to the Raleigh’s quarter wavelength rule, a peak-to-valley wavefront

error due to aberration larger than λ/4 in a conventional optical system is considered to be

visually noticeable and designers may aim for lower values.

In Fig.8.a, Fig.8.c, Fig.8.e and Fig.8.g, the image quality is shown as a function of the

DoF obtained with the 5-ring binary annular phase mask optimized for ψmax = 2.0λ after

spherical, coma, astigmatism, or a combination of the three were added to the pupil function

of the optical system. Each aberration was neither taken into account when optimizing the

mask, nor when calculating the averaged Wiener filter. On the other hand Fig.8.b, Fig.8.d,

Fig.8.f and Fig.8.h show the values of the image quality as a function of the DoF on a

traditional system when affected by the aforementioned aberrations. Notice that we now use

the full DoF range from −ψmax to +ψmax in the graphs, including the negative values, since

some aberrations break the symmetry of the PSF around ψ = 0.

We can observe in Fig.8.a that for spherical aberration, the values of IQ(φ, ψ) close to
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ψ = 0 stay very close to the aberration-free case, but as |ψ| increases, the values of IQ(φ, ψ)

are reduced. We can see that for α > 0.2λ, the minimum values of IQ(φ, ψ) drop by almost

2dB, and drop by 3.3dB for α = 0.5λ. Comparatively, for the classical system shown in

Fig.8.b, IQ(φ, ψ) drops by 2.9dB from α = 0 to α = 0.5λ at ψ = 0. We can also notice

the shift of the ”point of best focus” towards −ψ as α grows and we can see that, without a

mask, the values of IQ(ψ, φ) drop rapidly outside of this point. This shows that the systems

optimized solely for DoF correction are somewhat sensitive to small spherical aberrations,

and the drop in image quality is comparable to conventional systems at the focal point ψ = 0.

For coma, we can see in Fig.8.c that when passing from β = 0 to β = 0.5λ, IQ(φ, ψ) has

a drop of less than 1dB between ψ = −1λ and ψ = 1λ but drops by 2.9dB outside of this

range. In comparison, in Fig.8.d, the drop is 4.2dB for the conventional system at ψ = 0,

showing that the system with the binary phase mask is more robust to coma aberration,

even if the mask optimization did not take it into account.

For astigmatism, shown in Fig.8.e and Fig.8.f, we can see that the drop in IQ(φ, ψ) is

3.6dB for the system with a binary phase mask and 4.0dB for the conventional system. The

behavior is, similarly to coma, more stable between ψ = −1λ and ψ = 1λ and varies more

dramatically beyond this range.

Finally, for the combined effects of the aberrations in Fig.8.g and Fig.8.h, we can see a

maximum drop of IQ(ψ, φ) of 2.7dB for the system with a binary mask and deconvolution

and of 2.7dB for the conventional system at ψ = 0. The spherical aberration seems to dom-

inate IQ(ψ, φ) for the system with a phase mask, as we can see from the strong dissymetry

in the range 1 < |ψ| < 2, that occurs for spherical aberration (Fig.8.a). On the other hand,

we see in the conventional system a more pronounced drop of IQ(ψ, φ) at the ”point of
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best focus” than in the case with only spherical aberration, meaning that it is affected more

strongly by the other two aberrations. From this analysis, we can conclude that systems

with binary annular phase masks are robust to residual aberrations. The corresponding

performance loss is then comparable to conventional systems affected by similar residual

aberrations.

5.2 Robustness to image model

To evaluate the robustness of the optimized masks and filters to different scenes, let us

consider the minimal value of image quality obtained with the masks optimized for Soo(ν) ∝

ν−2.5 on an image having another PSD. This image quality will be defined as:

IQmin = min
k

[
IQ(φ2.5

opt, ψk)
]
. (11)

where φ2.5
opt defines the optimal mask for Soo(ν) ∝ ν−2.5. It has to be noted that IQmin is

computed using the averaged Wiener filter based on the nominal PSD Soo(ν) ∝ ν−2.5, which

is different of the PSD of the observed image.

We have plotted in Fig. 9.a the value of IQmin obtained with a generic image with PSD

Soo(ν) ∝ ν−2, for different values of ψmax, as a function of the number of rings. Since this

PSD has a more high-frequency content, the images are more difficult to deconvolve, and we

indeed observe that the values of IQmin are globally smaller than those of IQmaximin obtained

in Fig. 6. However, the global behavior of IQmin is similar: it grows with the number of

rings until, at a certain amount of rings, it levels off and has a much slower growth. Even

so, it levels off for a larger number of rings than in Fig. 6.
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On the other hand, we have represented in Fig. 9.b the value of IQmin obtained with a

generic image with PSD Soo(ν) ∝ ν−3. Since the PSD now has less high-frequency content,

the images are easier to deconvolve and we indeed observe that the values of IQmin are

globally larger than in Fig 6. The value of IQmin still grows with the number of rings until

it levels off, but it saturates for smaller number of rings than in Fig. 6 and Fig. 9.a. It is to

be noted that the slight decrease of image quality with the number of rings observed in some

curves (for example, for ψmax = 1λ) is due to the fact that the deconvolution filter, based on

the nominal PSD, is not perfectly adapted to the actual PSD of the observed image. We can

conclude from these simulations that as the high-frequency content of the image increases,

the overall hybrid imaging performance decreases and more rings are needed to saturate the

performance.

Let us now consider the performance of the optimized masks on real-world images.

Fig. 10.a (referred to in the following as “Lena”) has a small high-frequency content, and we

have checked that its PSD Soo(ν) falls between ν−2.5 and ν−3. On the other hand, Fig. 10.b

(referred to in the following as “Sea”), contains more high spatial frequency details and we

have checked that its PSD falls between ν−2.5 and ν−2.

In Figs. 11.a and 11.c, we have represented the values of IQmin obtained on Lena and on

Sea respectively. The conclusions are similar to those drawn from Fig. 9, showing that the

scene PSD is indeed the main factor influencing the final imaging performance of the hybrid

system. On Fig. 11.b and Fig. 11.d, we have represented the values of IQmaximin obtained on

Lena (b) and Sea (d) with masks optimized for the PSD model best adapted to each image,

that is, Soo(ν) ∝ |Õ(ν)|2, the square modulus of the Fourier transform of the sharp image.

By comparing Fig. 11.b with Fig. 11.a, we can see that the behavior of the curves and the
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obtained values of IQmaximin, obtained with the optimal masks, are very close to the values

of IQmin obtained with mask optimized with Soo(ν) ∝ ν−2.5. The same conclusion can be

drawn from the Sea image (Fig. 11.d and Fig. 11.c). This shows that the optimization of

the masks is robust to the chosen PSD model of the scene.

5.3 Visual performance comparison

Let us now visually assess the performance of the hybrid imaging systems based on the

optimized masks on images perturbed with a simulated defocus blur. For simplicity, the

deconvolutions are performed in the Fourier domain directly using Eq.5 with no truncation

of the deconvolution filter. We have displayed on Fig. 12.a the simulated image of Lena

that would be obtained by a well-focused diffraction limited optical system followed by

deconvolution with a Wiener filter adapted to the observed image. This “best possible

image” will be our reference. On Fig. 12.b, we have represented a simulated image of the

same scene that would be obtained with an imaging system defocused of ψ = ψmax = 2.0λ

followed by deconvolution with an averaged Wiener filter as defined in Eq. 5. We can see

that for this level of defocus the image is strongly blurred.

In Fig. 13 are displayed the simulated images obtained with a hybrid imaging system

with masks optimized at ψmax = 2.0λ and composed of 3 to 8 rings and zoom-ins of the brim

of the hat, its feathers and the eye of Lena so we can better appreciate the differences. These

masks have been optimized with the generic power-law PSD model Soo(ν) ∝ ν−2.5 and not

the PSD of the scene, Soo(ν) ∝ |Õ(ν)|2. The averaged Wiener filter used for deconvolution

is also based on the generic power-law PSD. For all the deconvolved images in Fig. 13 we

reach the goal of having a better sharpness and image quality than for the maskless system
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in Fig. 12.b. Of course, the sharpness is inferior to that obtained in Fig. 12.a, as the phase

mask alters the optical transfer function of the system to extend the DoF. We note that the

quality of the deconvolved images increases with the number of rings; with the 3-ring mask,

all the features of the scene can be identified, but there is an important loss of sharpness, as

well as ringing artifacts around high spatial frequency details, like the brim of the hat or the

feathers. With the 4-ring mask, the ringing is greatly reduced, but there is a slight increase

in blur as can be seen on feathers. With the 5-ring mask the sharpness is increased and

ringing is reduced even more; we can now identify finer feathers on the hat. With the 6-ring

mask, there is a very slight increase in visual quality, mostly in contrast: this is consistent

with the shape of the curve corresponding to ψmax = 2 in Fig. 11.a. The image obtained

with a 7-ring mask corresponds to a more significant sharpness improvement, which is again

consistent with the increase of IQmin observed in Fig. 11.a. Finally, passing from 7 to 8 rings

decreases IQmin by 0.1dB. This somehow counter-intuitive result, also observed in Fig. 11.a,

is due to the fact that the masks were optimized for a generic PSD model and not for the

PSD of the sharp image. Indeed, this drop disappears in Fig. 11.b.

In this section we have shown that the visual quality of the images as a function of the

number of rings is consistent with the value of the image quality criterion used to optimize

the masks.

6 Conclusion

We have studied the performance of DoF-extending annular binary phase masks as a function

of the number of rings and the desired DoF extension. This study was done using a co-design

approach with a hybrid imaging system that takes into account deconvolution in the global
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image quality. We have shown that the mask optimization landscape is highly nonconvex

and that it is plagued with many local maxima. However, some clear general tendencies

have been identified.

In particular, we have shown that more rings are necessary to reach higher DoF, but the

best possible image quality decreases as the required DoF range increases, so that the DoF

extension reachable with binary phase masks is bounded. Moreover, for a given value of the

required DoF, there is a point where augmenting the amount of rings does not improve the

performance anymore, indicating that a limited number of rings is enough to obtain the best

possible performance. This result is important for mask manufacturing, since the number

and thickness of the rings reachable by technology may be limited given a numerical aperture

and a target DoF.

We have also shown that binary annular phase masks, optimized for a nominal aberra-

tionless system, are relatively robust to small amounts of spherical, coma and astigmatism

aberrations and as these aberrations grow, the drop on image quality is comparable to the

drop on a conventional system. Finally, we have empirically validated that using a generic

power-law PSD model is sufficient to obtain masks with a predictable performance regardless

of the observed scene.

This work has many perspectives, such as applying the same co-design approach to other

types of DoF enhancing masks with different profiles and complexities, or taking into account

the ratio between the pixel size and the diffraction-limited spot size.14 In these studies, it will

be also interesting to investigate how co-design can help correcting for aberrations as well as

extending the DoF, as in Ref.15 for example, but with the added originality of taking into

account deconvolution in the final image quality. Moreover, since it is a common practice
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in embedded imaging systems to truncate the deconvolution filter to save processing time

and power consumption, it will be important to study the effects of this truncation on the

final image and to investigate the compromise between computational power and restored

image quality for real-time video processing on hybrid system usage. Finally, it would be

interesting to study the relationship between IQ and more conventional optical system design

quality metrics, like the MTF, even-though the later cannot quantify the raw image noise

amplification but only the deterministic scene frequency contains restoration.
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Fig 8 Performance comparison of a system with a 5-ring binary annular phase mask optimized for
ψmax = 2.0λ and deconvolution and conventional systems with the addition of: a)-b) spherical aberration
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Fig 9 Performance comparison of optimal annular phase masks obtained for the model Soo(ν) ∝ ν−2.5 and
applied to scenes following the model (a) Soo(ν) ∝ ν−2 and (b) Soo(ν) ∝ ν−3.

Fig 10 Natural images used as scenes to test the performance of the hybrid imaging system
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Fig 11 Variation of IQmin and IQmaximin for different values of ψmax and different numbers of rings,
using two different scenes: Lena (a and b) and Sea (c and d). The masks are optimized for the model with
Soo(ν) ∝ ν−2.5 (a and c respectively) and for the scenes themselves where Soo(ν) ∝ |Õ(ν)|2 (b and d).
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Fig 12 Images produced by a diffraction limited system with SNR = 34dB after deconvolution at (a)
ψ = 0λ and (b) ψ = 2.0λ.
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Fig 13 Image and zoom-ins of Lena obtained for defocus ψ = ψmax with the simulated hybrid imaging
system with masks optimized for ψmax = 2.0λ and different numbers of rings.
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