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Monitoring squeezed collective modes of a 1D Bose gas after an interaction quench
using density ripples analysis

Max Schemmer, Aisling Johnson,∗ and Isabelle Bouchoule†

Laboratoire Charles Fabry, Institut dOptique, CNRS, Université Paris Sud 11,
2 Avenue Augustin Fresnel, F-91127 Palaiseau Cedex, France

(Dated: October 4, 2018)

We investigate the out-of-equilibrium dynamics following a sudden quench of the interaction
strength, in a one-dimensional quasi-condensate trapped at the surface of an atom chip. Within a
linearized approximation, the system is described by independent collective modes and the quench
squeezes the phase space distribution of each mode, leading to a subsequent breathing of each
quadrature. We show that the collective modes are resolved by the power spectrum of density
ripples which appear after a short time of flight. This allows us to experimentally probe the expected
breathing phenomenon. Our results are in good agreement with theoretical predictions which take
the longitudinal harmonic confinement into account.

PACS numbers: 03.75.Hh, 67.10.Ba

I. INTRODUCTION

The out-of-equilibrium dynamics of isolated quantum
many-body systems is a field attracting a lot of inter-
est [1], triggered in part by progress in cold atom exper-
iments. A particular focus has been devoted to the case
of sudden quenches where the system is brought out-of-
equilibrium by a sudden change of a Hamiltonian param-
eter, and in particular the case of an interaction quench,
both theoretically [2] and experimentally [3–7]. Whether
and how the system relaxes towards an equilibrium state
is the subject of intense theoretical work. The role of
integrability, not completely elucidated, is the focus of
many studies. Within this context, the case of a 1D Bose
gas with contact repulsive interactions, described by the
integrable Lieb-Liniger model, is a prime theoretical can-
didate to uncover the underlying physics, studied in e.g
[8–11].

This paper constitutes the experimental study of the
out-of-equilibrium dynamics following a sudden quench
of the interaction strength in a 1D Bose gas with repul-
sive interactions. Within a linearized approximation, the
evolution following a splitting of a 1D Bose gas in two
copies, studied in [6], can be interpreted as an interac-
tion quench in an effective 1D Bose gas. Investigating the
first-order correlation function, the authors observed an
apparent thermalization, taking the form of a light cone
effect. This observation may however conceal underlying
non-equilibrium dynamics, as revealed recently by the
observation of recurrences in a similar experiment [12].
Finding appropriate observables revealing these dynam-
ics is thus a key point for investigating out-of-equilibrium
phenomena. In this paper, by investigating the density
ripples appearing after short time of flight, the behavior
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FIG. 1. Squeezing of each collective mode after an inter-
action strength quench from gi to gf . The Gaussian phase
space distributions before the quench (t = 0−), just after the
quench (t = 0+) and after an evolution time π/ (2ωq) (dashed
ellipse) are represented in (b), where lines correspond to a
given probability density (here we chose κ = 3). The subse-
quent breathing is seen in (c), where the time evolution of the
phase distribution is shown in color plot.

of collective modes is probed, rather than a global quan-
tity such as the first-order correlation function, allowing
for a better understanding of the physics at play after
an interaction quench. The dynamics is revealed by the
oscillatory behavior of each component of the density rip-
ples power spectrum, observed for times that go beyond
the apparent thermalization time seen on the first or-
der correlation function. We show that these oscillatory
dynamics are the signature of squeezed collective modes:
for each collective mode, the quench produces a squeezed
phase space distribution, leading to a subsequent oscilla-
tion of the width of its quadratures — a breathing behav-
ior. As well as improving the understanding of the effect
of an interaction quench, this work constitutes an obser-
vation of squeezed collective modes, a result interesting
on its own.

II. THE INTERACTION QUENCH WITHIN
THE LINEARIZED APPROACH

The physics at play can be understood by considering
a 1D homogeneous Bose gas, of length L, temperature T
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and density n0, with particles of mass m interacting with
a two-body repulsive contact interaction gδ(z), where z
is the distance between the two particles. At t = 0, g is
suddenly changed from gi to gf = (1+κ)gi, where κ is the
quench strength. While the complete treatment of an in-
teraction quench is tremendously difficult the problem is
greatly simplified if one can rely on a linearized approach,
as presented below. Within the quasi-condensate regime,
density fluctuations are strongly reduced (|δn(z)| � n0)
and phase fluctuations occur on large length scales, such
that the Hamiltonian of the system can be diagonalized
using the phase-density representation of the field op-
erator Ψ(z) =

√
n0 + δn(z) exp(iθ(z)) and the Bogoli-

ubov procedure [13]. The obtained linearized modes cor-
respond to Fourier modes. For each wave-vector q, the
dynamics is governed by the harmonic oscillator Hamil-
tonian [14]

Hq = Aqn
2
q +Bqθ

2
q = ~ωq

(
ñ2
q/2 + θ̃2

q/2
)

(1)

where the canonically conjugated hermitian operators nq
and θq are the Fourier components [15] of δn and θ
and where the reduced variables are defined by ñq =

nq(Aq/Bq)
1/4 and θ̃q = θq(Bq/Aq)

1/4. For wavevec-
tors q much smaller than the inverse healing length
ξ−1 =

√
mgn0/~, the excitations are of hydrodynamic

nature [16]. Their frequency is ωq = cq, where the speed

of sound is c =
√
n0∂nµ/m, and the Hamiltonian’s co-

efficients are Bq = ~2q2n0/(2m) and Aq = mc2/(2n0).
Here µ(n) is the equation of state of the gas relating the
chemical potential µ to the linear density, which reduces
to µ = gn for pure 1D quasi-condensate. For a given q,
the dynamics of the quenched harmonic oscillator is rep-
resented in Fig. (1). Before the quench the phase space
distribution is the one of a thermal state: an isotropic
Gaussian in the (θ̃q, ñq)-plane. The quench affects Aq
while θq and nq do not have time to change. The vari-

ances thus become 〈θ̃2
q〉t=0+ = 〈θ̃2

q〉t=0−/(1 + κ)1/2 and

〈 ˜δnq
2〉t=0+ = 〈 ˜δnq

2〉t=0−(1 + κ)1/2[17]. The subsequent
evolution is a rotation in phase space at a frequency ωq
leading to a breathing of each quadrature. In particular

〈θ2
q〉 = 〈θ2

q〉i(1 + κ sin2(cqt)), (2)

where the initial value 〈θ2
q〉i is the thermal prediction

〈θ2
q〉 = mkBT/(~2n0q

2) [18].
Probing the non equilibrium dynamics following a

quench is not straightforward, especially concerning
the choice of the observable. Since density fluctua-
tions are very small within the quasi-condensate regime,
it is more advantageous to probe the phase fluctua-
tions [19]. One way is to investigate the one-body cor-

relation function g1(z) = 〈Ψ̂†(z)Ψ̂(0)〉, which, for z �
ξ and in the quasi-condensate regime, writes g1(z) '
n0e
−〈(θ(z)−θ(0))2〉/2 [13]. However since phase fluctu-

ations are large in a quasi-condensate, the exponen-
tial cannot be linearized and g1(z) mixes contributions

from all Bogoliubov modes [20], preventing the observa-
tion of the squeezed dynamics. In fact, the linearized
model above predicts the light-cone effect on the g1 func-
tion: g1(z) changes from its initial exponential decay
exp(−|z|/lic), where lic = 2~2n0/(mkBT ), to an exponen-
tial decay with a new correlation length lfc = 2lic/(κ+ 2)
for z < 2ct. The breathing of each squeezed Bogoliubov
mode is not transparent here. Moreover, for times larger
than a few tg1th = lfc /c, the g1 function essentially reaches
the form expected for a thermal state at a temperature
Tf = T (κ + 2)/2, and the ongoing dynamics is hidden.
In this paper we use the density ripples analysis to reveal
the non equilibrium dynamics of the gas by probing the
breathing of each mode.

III. RESOLVING BOGOLIUBOV MODES WITH
DENSITY RIPPLES

Density ripples appear after switching the interac-
tions off and waiting for a free evolution time tf (time-
of-flight), during which phase fluctuations transform
into density fluctuations [21–24]. Consider the power
spectrum of density ripples 〈|ρ(q)|2〉, where ρ(q) =

(1/
√
L)
∫
dz(〈n(z, tf ) − n0)eiqz. Propagating the field

operator during the time of flight and assuming trans-
lational invariance we obtain [25]

〈|ρn0
(q)|2〉 =

∫
dxe−iqx(f(q, x)− n2

0), (3)

where

f(q, x) ' n2
0〈ei[θ(0)−θ(−~qtf/m)+θ(x−~qtf/m)−θ(x)]〉, (4)

averages in Eq. (4) are taken before the time of flight.
The function f involves only pairs of points separated
by ~qtf/m. For small wave vectors q~tf/m � lc, the
phase difference between those points is small and one
can expand the exponential. To lowest order, assuming
uncorrelated distributions for each mode q and vanishing
mean values, we then find

〈|ρn0
(q)|2〉 = 4n2

0〈θ2
q〉 sin2

(
~q2tf/(2m)

)
, (5)

showing that, for low lying q, the density ripples spec-
trum directly resolves the phase quadrature 〈θ2

q〉 of indi-
vidual Bogoliubov modes [26]. The proportionality be-
tween 〈|ρn0

(q)|2〉 and 〈θ2
q〉 implies that 〈|ρn0

(q)|2〉 oscil-
lates according to Eq. (2) when varying the time t after
the quench. Density ripples are thus an ideal tool to
investigate the quench dynamics. Note that, in the fol-
lowing we are interested, for each wave vector q, in the
evolution of 〈|ρn0

(q)|2〉 with the evolution time t, such
that the proportionality factor 4n2

0 sin2
(
~q2tf/(2m)

)
is

irrelevant for our data analyis.
In typical experiments, atoms are confined by a smooth

potential V (z). For weak enough confinement and for
wavelengths much smaller than the system’s size, one can
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however use the above results for homogeneous systems
within a local density approximation (LDA) [27]. Then
ρ̃(q) =

∫
dzδn(z, tf )eiqz fulfills ρ̃(q) '

∫
dz〈|ρn0(z)(q)|2〉

where n0(z) is the density profile, which can itself be eval-
uated within the LDA using the gas equation of state and
the local chemical potential µ(z) = µ0 − V (z). Injecting
Eq. (2) and Eq. (5) into the LDA integral, we find

〈|ρ̃(q)|2〉/〈|ρ̃(q)|2〉i = 1 + κF(cqt), (6)

where c is the speed of sound after the quench evaluated
at the trap center and F only depends on the shape of
V (z). For a box-like potential, one recovers previous re-
sults and F(τ) = sin2(τ). The expression of F is given
in Appendix D in the case of a harmonic potential: The
oscillatory behavior is preserved, although the spread in
frequencies originating from the inhomogeneity in n0 in-
troduces damping, which is a pure dephasing effect.

IV. EXPERIMENTAL REALIZATION

The experiment uses an atom-chip set up [28] where
87Rb atoms are magnetically confined using current-
carrying micro-wires. The transverse confinement, acting
in a vertical plane, is provided by three parallel wires car-
rying AC-current modulated at 400 kHz, which renders
the magnetic potential insensitive to wire imperfections
and, allows for independent control of the transverse and
longitudinal confinements. We perform radio frequency
(RF) forced evaporative cooling until we reach the de-
sired temperature. We then increase the RF frequency
by 60 kHz, providing a shield for energetic three-body
collision residues and wait during 150 ms relaxation time.
The clouds contain a few thousand atoms, in a trap with
a transverse frequency ω⊥/2π = 1.5 or 3.1 kHz, depend-
ing on the data set, and a longitudinal frequency ω‖/2π =
8.5 Hz. The samples are quasi-1D, the temperature and
chemical potential satisfying µ, kBT < ~ω⊥. The tem-
perature is low enough so that the gas typically lies well
within the quasi-condensate regime [29]. The equation
of state is well described by µ = ~ω⊥(

√
1 + 4na − 1),

where a = 5.3 nm is the 3D scattering length [30].
While, for na � 1, one recovers the pure 1D expression
µ = gn, where g = 2~ω⊥a, this equation of state takes
the broadening of the transverse size at larger na into
account. The longitudinal density profile, well described
by the LDA, extends over twice the Thomas-Fermi ra-
dius RTF =

√
2µ0/m/ω‖. The speed of sound derived

from the equation of state is c = c1D/(1 + 4na)1/4 where

c1D =
√

2~ω⊥na/m is the pure 1D expression. For data
presented in this paper, c/c1D is close to 0.7. Since the
effective interaction strength is proportional to c2, it is
proportional to ω⊥.

The interaction strength quench is performed by ramp-
ing the transverse trapping frequency ω⊥ from its initial
value ω⊥,i to its final value ω⊥,f = (1 + κ)ω⊥,i within a
time tr, typically of the order of 1 ms. This time is long

enough for the transverse motion of the atoms to follow
adiabatically but short enough so that the quench can
be considered as almost instantaneous with respect to
the probed longitudinal excitations (see Appendix H 1).
We simultaneously multiply ω‖ by

√
1 + κ, to avoid mod-

ification of the mean profile and of the Bogoliubov wave-
functions(see Appendix E).

In order to probe density ripples, we release the atoms
from the trap and let them fall under gravity for a time
tf = 8 ms before taking an absorption image. The trans-
verse expansion, occurring on a time scale of 1/ω⊥, en-
sures the effective instantaneous switching off of the in-
teractions with respect to the probed longitudinal exci-
tations. The density ripples produced by the phase fluc-
tuations present before the free fall are visible in each
individual image, as seen in Fig. (2)(a). From the image,
we record the longitudinal density profile ρ(z, tf ) and its
discrete Fourier transform [31] ρ̃(q). We acquire about
40 images taken in the same conditions with atom num-
ber fluctuations smaller than 10%. From this data set,
we then extract the power spectrum 〈|ρ̃(q)|2〉. We note
〈|ρ̃(q)|2〉i the power spectrum obtained before the quench
and a typical spectrum is shown in Fig. (2)(b). We chose
to normalize the momenta by R−1

TF: since the Fourier
distribution of the ith Bogoliubov mode of a 1D quasi-
condensate is peaked at ki ' i/RTF (see Appendix E),
the x-axis roughly corresponds to the mode index. The

qRTF
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FIG. 2. Density ripples analysis (color online). (a) Typical
absorption image (optical density shown) taken after a time-
of-flight tf = 8 ms. (b) Power spectrum of density ripples,
obtained by averaging over about 50 images, for a cloud at
thermal equilibrium containing 16000 atoms confined in a trap
with frequencies ωz/(2π) = 8.5 Hz and ω⊥/(2π) = 1.5 kHz,
yielding a Thomas-Fermi radius RTF = 75 µm. The dashed
(green) line is a theoretical fit (see text), yielding a temper-
ature T = 55 nK and an optical resolution σ = 2.9 µm. (c)
Power spectra after a quench of strength κ = 2, at times
t = 2.1 ms (crosses, green), t = 2.6 ms (circles, blue) and
t = 4.6 ms (squares, black), the solid (red) curve being the
initial power spectrum.



4

predicted power spectrum 〈|ρ̃(q)|2〉th is computed using
the LDA and analytical solution of Eq. (3) for thermal
equilibrium (see Appendices B, C). This expression is

peaked around kRTF '
√
πm/(~tf )RTF ' 50. For com-

parison with experimental data, we take the imaging
resolution into account by multiplying 〈|ρ̃(q)|2〉th with

e−q
2σ2

where σ is the rms width of the impulse imaging
response function, assumed to be Gaussian (Appendix F
discusses the effect of this finite optical resolution). The
experimental data ultimately compared well with the the-
oretical predictions, as shown in Fig. (2)(b), where T and
σ are obtained by fitting the data [32] [33]. Finally we
obtain kBT/µ0 = 0.4, close to the lowest value obtained
in similar setups [24, 34].

We investigate the dynamics following the quench of
the interaction strength by acquiring power spectra of
density ripples at different evolution times t after the
quench. We typically acquire power spectra every 0.5 ms,
over a total time of 5 ms. A few raw spectra are shown in
Fig. (2)(b), for a quench strength κ = 2.0. At first sight
the power spectra seem erratic. In order to reveal the ex-
pected oscillatory behavior of each Fourier component we
introduce, for each wavevector q of the discrete Fourier
transform, and each measurement time t, the reduced
time τ = cqt, where c is evaluated for the central den-
sity, and compute J(q, τ) = 〈|ρ̃(q)|2〉(t)/〈|ρ̃(q)|2〉i. We
restrict the range of q values to 10 < qRTF < 40, to
ensure both the condition q~tf/m � lc and the validity
of the LDA. On the resulting set of spare data, shown
in the inset of Fig. (3), an oscillatory behavior appears,
despite noise on the data. To combine all the data in a
single graph, we perform a “smooth” binning in τ , i.e.
we compute, for any given reduced time τ , the weighted
averaged of the data with a Gaussian weight function
in τ of width ∆ = 0.31 : namely we compute J̄(τ) =∑
α J(qα, τα)e−(τα−τ)2/(2∆2)/

∑
α e
−(τα−τ)2/(2∆2), where

the sum is done on the data set. The function J̄(τ),
shown in Fig. (3) shows a clear oscillatory behavior.

We repeat the experiment for different quench
strengths κ = (ω⊥,f/ω⊥,i − 1) = {0.3, 3, 5}, and initial
trapping oscillation frequencies ω⊥ = {3, 1.5} kHz. The
oscillatory behavior is present in all cases as shown in
Fig. (3). We compared the observed oscillations with the
theoretical predictions from the linearized model, Eq. (6).
The temporal behavior of the data is in good agreement
with the predicted one: both the frequency and the ob-
served damping are in agreement with the predictions.
The amplitude of the experimental oscillations on the
other hand are significantly smaller than the predictions,
and in Fig. (3) we plot the theoretical predictions for
quench strengths twice as small as the experimental ones.
Moreover, for a given quench strength, the observed am-
plitude depend on the initial transverse frequency, in
contradiction with the theoretical model. Several effects
leading to a decrease of the oscillation amplitude are dis-
cussed in Appendix H. However, they only partially ac-
count for the observed amplitude reduction.

0 1 2 3
τ/π

0.5

1.0

1.5

2.0

2.5

3.0

J̄ 0 1 2 τ/π

1

2

J

FIG. 3. Time evolution of squeezed collective modes pro-
duced by an interaction quench. The normalized density
ripples power spectrum is plotted versus the reduced time
τ = cqt, where the speed of sound c is calculated for the
central density. Inset shows the data corresponding to each
measurement time and discrete q values, for a data set corre-
sponding to κ = 2 and ω⊥,i = 2π×1.5 kHz, together with the
resulting continuous averaged quantity J̄ (see text). Orange
crosses correspond to t < tg1th and blue circles to t > tg1th . The
main graph shows the evolution of the experimental smoothed
quantity J̄ for different data sets. The error bars show the
typical statistical uncertainty on J̄ . The initial transverse os-
cillation frequency is 1.5 kHz, except for the thick dark grey
(blue) curve for which it is 3 kHz. Quench strengths are
κ = 4 (light gray (orange)), κ = 2 (dark gray (blue)) data
and κ = −0.7 (black). Dashed lines are theoretical predic-
tions for quench strengths κ = 2 (lightgray (orange)), 1 (light
gray) and -0.35 (black).

V. DISCUSSION

In conclusion, analyzing density ripples, we revealed
the physics at play after a sudden quench of the interac-
tion strength in a quasi-1D Bose gas, namely the breath-
ing associated to the squeezing of each collective mode.
The observed out-of-equilibrium dynamics continues for
times larger than tg1th, for which the g1 function essentially
reached its asymptotic thermal behavior [35] This can be
seen in the inset of Fig. (3) where data corresponding to
t > tg1th, shown in blue circles, still present an oscillatory
behavior. This clearly underlines the power of the den-
sity ripple analysis to unveil out-of-equilibrium physics.
The observed damping is compatible with the sole de-
phasing effect due to the longitudinal harmonic confine-
ment. At later times, the discreteness of the spectrum
and its almost constant level spacing is expected to pro-
duce a revival phenomenon. Its observation might how-
ever be hindered by a damping of each collective mode
due to non-linear couplings. Such a damping occurs, de-
spite the integrability of the 1D Bose gas with contact
repulsive interactions, because the Bogoliubov collective
modes do not correspond to the conserved quantities. A
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long-lived non-thermal nature of the state produced by
the interaction strength might be revealed either by ob-
serving excitations in both the phononic regime and the
particle regime of the Bogoliubov spectrum [36], or, ide-
ally, in finding a way to access the distribution of the
Bethe-Ansatz rapidities.

ACKNOWLEDGMENTS

This work was supported by Région Île de France (DIM
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APPENDIX

This appendix gives technical information and details
of calculations. In Appendix A we give a general
derivation of the density ripples power spectrum, which
does not a priori assume a homogeneous system. Ap-
pendix B gives the result for a homogeneous system and
the analytical prediction for thermal equilibrium [37].
Appendix C details the derivation of the density ripple
power spectrum for a trapped gas, computed using the
results for homogeneous gases and the local density
approximation. Appendix D provides the explicit
calculation of the post-quench evolution of the power
spectrum for a harmonically trapped gas, namely the
calculation of the function F of the main text. In
Appendix E we verify the validity of the local density
approximation for the parameters of the data presented
in the main text. For this purpose, we compute the
density ripple power spectrum using the Bogoliubov
modes of the trapped gas. In Appendix F, we investigate
the effect of finite resolution on the measured density
ripple power spectrum. We also make the link between
the power spectrum and the auto-correlation function,
which permits to compare our data at thermal equilib-
rium with previously published work. In Appendix G,
we justify that interactions play a negligible role during
time-of-flight, so that the calculations of the density
ripples power spectrum, which assume instantaneous
switch-off of the interactions, are valid. In Appendix H,

we investigate two effects responsible for a reduction of
the oscillation amplitude of the quantity J̄(τ), extracted
from the data, as compared to the simple theoretical
predictions Eq. (6) of the main text: First the finite
ramp time of the interaction strength decreases the
squeezing of the collective modes, and second the finite
resolution in τ resulting from data binning is responsible
for a decrease of the expected oscillation amplitude on
the processed data.

Appendix A: Derivation of the density ripples power
spectrum

The power spectrum of density ripples has been first
investigated in the limit of small density ripples and
for a gas initially in the 3D Thomas-Fermi regime (i.e.
µ � ~ω⊥) [22, 38]. It was then computed assuming in-
stantaneous switching off of the interactions in [21]. Here,
for consistency, we rederive Eq. (4) and (5) of the main
text. Since we will later consider trapped gases, let us
first assume a general scenario where we do not restrict
ourselves to the homogeneous case. We let the gas evolve
freely for a time tf after interactions have been switched
off. The power spectrum of the density fluctuations after
tf writes

〈|ρ̃(q)|2〉 =

∫ ∫
dz1dz2e

iq(z1−z2)〈δn(z1, tf )δn(z2, tf )〉.
(A1)

Writing δn(z) = n(z)− 〈n(z)〉 and expanding the above
equation, the term |

∫
dzeiqz〈n(z, tf )〉|2 appears. Here we

consider times of flight short enough so that the shape
of the cloud barely changes during time of flight, so that
〈n(z, tf )〉 ' 〈n(z, 0)〉. We moreover consider wavevectors
q much larger than the inverse of the cloud length, such
that |

∫
dzeiqz〈n(z, 0)〉|2 is a negligible quantity. We then

have

〈|ρ̃(q)|2〉 '
∫ ∫

dz1dz2e
iq(z1−z2)〈n(z1, tf )n(z2, tf )〉.

(A2)
To compute n(z, tf ) = Ψ+(z, tf )Ψ(z, tf ) we evolve the
atomic field with the free-particle propagator, which
leads to

ψ(z, tf ) =
1√
2πtf

∫
dαψ(α, 0)e

i
(z−α)2

2tf , (A3)

where for simplicity we use a unit system in which
m = ~ = 1. We then have

〈n(z1, tf )n(z2, tf )〉 =
1

(2πtf )2

∫ ∫ ∫ ∫
dαdβdγdδ〈ψ+

αψβψ
+
γ ψδ〉e

−i (z1−α)2

2tf e
i
(z1−β)

2

2tf e
−i (z2−γ)

2

2tf e
i
(z2−δ)

2

2tf , (A4)

where we use the simplified notation ψν = ψ(ν, 0). Expanding the exponentials, the above expression writes
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〈n(z1, tf )n(z2, tf )〉 =
1

(2πtf )2

∫ ∫ ∫ ∫
dαdβdγdδ〈ψ+

αψβψ
+
γ ψδ〉e

i
(α−β)z1

tf e
i β

2−α2

2tf e
i
(γ−δ)z2
tf e

i δ
2−γ2
2tf . (A5)

Injecting into Eq. (A2), and using
∫
dzeikz = 2πδ(k) and δ(x/α) = αδ(x), we get

〈|ρ̃(q)|2〉 =

∫ ∫
dαdδ〈ψ+

αψα+qtfψ
+
δ+qtf

ψδ〉e−i
α2

2tf e
i
(α+qt)2

2tf e
−i (δ+qt)

2

2tf e
i δ

2

2tf . (A6)

Defining δ = α+X, we obtain

〈|ρ̃(q)|2〉 =

∫ ∫
dαdXeiqX〈ψ+

αψα+qtfψ
+
α+X+qtf

ψα+X〉. (A7)

For gases lying deep in the quasi-condensate regime, one can neglect density fluctuations when estimating the expec-
tation value in the above equation, such that

〈|ρ̃(q)|2〉 '
∫ ∫

dαdXeiqX
√
n(α)n(α+ qtf )n(α+X + qtf )n(α+X)〈ei(θ(α)−θ(α+qtf )+θ(α+X+qtf )−θ(α+X))〉. (A8)

The following section applies this result to homoge-
neous systems. This equation is however not restricted
to homogeneous systems and we will use it to treat the
effect of the trap beyond the local density approximation.

Appendix B: Power spectrum of the density ripples
for a homogeneous gas

For a homogeneous gas, the relevant quantity is an
intensive variable which relates to the expression 〈|ρ̃(q)|2〉
of the previous section by

〈|ρ(q)|2〉 =
1

L
〈|ρ̃(q)|2〉 (B1)

where L is the length of the box. Injecting Eq. (A8) into
Eq. (B1), we recover Eq. (3) and (4) of the main text,
up to an irrelevant term in δ(q) [39]. In fact, Wick’s
theorem is applicable since θ is a Gaussian variable [40],
which leads to

〈|ρ(q)|2〉
n2

0

=

∫
dXeiqX−

1
2 〈(θ(0)−θ(qtf )+θ(X+qtf )−θ(X))2〉.

(B2)
To compute the power spectrum of density ripples

for a thermal equilibrium state, we follow the calcu-
lation made in [21] and expand the exponential term
in Eq. (B2) as a function of the first order correla-

tion function g(1)(z) = n0e
− 1

2 〈(θ(0)−θ(z))2〉, which fulfils
g(1)(z) = n0e

−|z|/lc where lc = 2~2n0/(kBT ) [21]. Cal-
culation of the integral in Eq. (B2) then leads to

〈|ρ(q)|2〉
n2

0

=
4qlc

q(4 + l2cq
2)

−
4e−

2~qtf
mlc

(
qlc cos(

~q2tf
m ) + 2 sin(

~q2tf
m )

)

q(4 + l2cq
2)

. (B3)

0 102 4 6 81 3 5 7 9

0

1

0.5

1.5

FIG. 4. Density ripples power spectrum for a homogeneous
gas. The exact formula Eq. (B3) (dashed curve) is compared
to the small q approximation given Eq. (5) of the main text,
where 〈|ρ(q)|2〉 is proportional to 〈θ2q〉 (solid curve). The
only relevant parameter is ~tf/(ml2c). Results are shown
for ~tf/(ml2c) = 0.05, a value corresponding to the data de-
picted in Fig. (2,b) of the main text, the correlation length
lc = 2~2n0/(mkBT ) being computed for the central density.
The effect of the imaging resolution is to multiply this theo-

retical power spectrum with e−σ
2q2 , where σ is the rms width

of the imaging pulse response function, assumed to be Gaus-
sian. For our data, σ

√
m/(~tf ) = 0.85 and only the first

maximum of 〈|ρ(q)|2〉 remains visible.

Note that we corrected the formula given in [21]. The
power spectrum computed with this equation is com-
pared in Fig. 4 to the approximated formula valid for
small q, namely Eq. (5) of the main text.

Appendix C: Density ripple power spectrum for a
harmonically confined gas under the LDA

Let us investigate the density ripples power spectrum
in the case of a gas trapped in a longitudinal potential
smooth enough so that the cloud size L is much larger
than the typical phase correlation length lc and much
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larger than ~qtf/m: L � lc, ~qtf/m. As in section A,
we moreover consider the power spectrum for wavevec-
tors q � 1/L. Let us start with the general expression
Eq. (A1) that we write

〈|ρ̃(q)|2〉 =

∫
dz

∫
du〈δρ(z, tf )δρ(z + u, tf )〉eiqu. (C1)

Consider 〈δρ(z, tf )δρ(z + u, tf )〉 for a given z. This ex-
pression vanishes over a length much smaller than L, so
values of u significantly contributing to the integral are
much smaller than L. Moreover the region of the initial
cloud contributing most to 〈δρ(z, tf )δρ(z+u, tf )〉 is much
smaller than L for sufficiently large L. Then, to compute
〈δρ(z, tf )δρ(z + u, tf )〉 one can perform a local density
approximation and use the result of a homogeneous gas
at a density n0(z). We then obtain

〈|ρ̃(q)|2〉 =

∫
dz〈|ρn0(z)(q)|2〉 (C2)

where the subscript n0(z) specifies that one considers the
result for a homogeneous gas of density n0(z). This ex-
pression is referred to as the local density approximation
expression (LDA) of the power spectrum. We have tested
this approximation, for conditions close to the experi-
mental data presented in the main text, by comparing it
with calculations based on the Bogoliubov excitations of
the trapped system (see section E).

Appendix D: Time evolution of the density ripple
power spectrum for a harmonically confined gas

Here we give an explicit derivation of Eq. (6) of the
main text, for a gas harmonically confined in a lon-
gitudinal trap of frequency ω‖. Injecting Eq. (5) and
Eq. (2) of the main text into Eq. (C2), and using the
local initial power spectrum of θ which writes 〈θ2

q〉 =

mkBT/(~2n0q
2), we derive Eq. (6) of the main text with

F =

∫
dzn0(z) sin2 (c(z)qt) /N (D1)

where N is the total atom number. The density profile
n0(z) is estimated itself within the LDA, using the local
chemical potential

µ(z) = µp(1− (z/RTF)2)), (D2)

where RTF is the Thomas-Fermi radius of the density
profile and µp is the chemical potential at the trap center.
For a transverse harmonic confinement of frequency ω⊥,
it has been checked, by comparing with predictions of
the 3D Gross-Pitaevskii equation, that the equation of
state of the gas is very well described by the heuristic
formula [30]

µ(n) = ~ω⊥
(√

1 + 4na− 1
)
, (D3)

where a is the 3D scattering length between atoms.
For small linear densities, we recover the 1D expression
µ = 2~ω⊥an, valid far from the confinement-induced res-
onance [41]. Using Eq. (D3) and Eq. (D2), we obtain the
density profile

n0(z) =
[(
η(1− z̃2) + 1

)2 − 1
]
/(4a) (D4)

where we introduced z̃ = z/RTF and η = µp/(~ω⊥).
This yields N = (4/3η + 8η2/15)RTF/(2a). The local
speed of sound on the other hand, obtained from the
thermodynamic relation c =

√
n(∂µ/∂n)/m, writes

c(z) = cp

√√√√ (1 + η)
[
(1 + η(1− z̃2))

2 − 1
]

(1 + η(1− z̃2)) ((1 + η)2 − 1)
, (D5)

where cp is the speed of sound computed for the central
density. Injecting into Eq. (D1), we then find

F =
1

4η/3 + 8η2/15

∫ 1

0

dz̃
[(

1 + η(1− z̃2)
)2 − 1

]
sin2


τ

√√√√ (1 + η)
[
(1 + η(1− z̃2))

2 − 1
]

(1 + η(1− z̃2)) ((1 + η)2 − 1)


 . (D6)

When the gas is deeply 1D, namely for η � 1, this ex-
pression reduces to

F1D =
3

2

∫ 1

0

dz̃(1− z̃2) sin2
(
τ
√

1− z̃2
)
. (D7)

Experimentally, values of η are in the range [0.6; 1.3].
Fig. 5 shows the function F , computed for η = 1. We
compare it to F1D and to the expression expected for a
homogeneous gas, namely sin2(τ).

Appendix E: Beyond the LDA: calculation using
Bogoliubov modes of a harmonically confined 1D gas

Here we consider a 1D gas confined longitudinally in a
harmonic trap of frequency ω‖. In opposition to the cal-
culations done in the previous section we do not rely on
the local density approximation but use the Bogoliubov
modes of the trapped gas to compute the post-quench
evolution and the density ripples power spectrum. The
relevant collective modes lie deep in the phononic regime.
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0

FIG. 5. Oscillation of each spectral component of the power
spectrum for a harmonically confined gas in the LDA (color
online). The function F is shown in thick solid lines (green),
for η = µp/(~ω⊥) = 1.0. The pure 1D limit, corresponding to
η � 1 is shown as dashed (red) lines. The undamped oscil-
lations expected for a homogeneous gas are shown in dotted
(blue) line. In all the cases, τ = cqt where c is the central
sound velocity.

The Bogoliubov modes, indexed by an integer ν, then
acquire an analytical dispersion relation and analytical
wavefunctions that one can use for calculations. For each
mode, the dynamics are accounted for by the harmonic
oscillator Hamiltonian

Hν = ~ων
(
x2
ν

2
+
p2
ν

2

)
, (E1)

where ων = ω‖
√
ν(ν + 1)/2 and xν and pν are canoni-

cally conjugate variables. The phase and density fluctu-

ation operators write

{
θ(z) =

∑
ν θν(z)pν

δn(z) =
∑
ν nν(z)xν

(E2)

where



θν(z) = 1√

2

(
mg
~2np

)1/4 √
2ν+1

(ν(ν+1))1/4
Pν( z

RTF
)

nν(z) =
√

2ν+1
2RTF

(ν(ν + 1))
1/4
(

~2np
mg

)1/4

Pν( z
RTF

).

(E3)
Here np and RTF are the central density and radius of the
Thomas-Fermi profile n0(z) = np(1− (z/RTF )2) and Pν
are the Legendre polynomials. The interaction quench
consists of a sudden change of the interaction parameter
g from gi to gf = (1 + κ)gi at t = 0, while changing the

longitudinal oscillation frequency by a factor
√

1 + κ so
that RTF stays constant. Then the interaction quench
preserves the shapes of the wavefunctions θν and nν , and
it simply changes the canonical variables xν and pν ac-
cording to

{
xν(t = 0+) = (gf/gi)

1/4xν(t = 0−)
pν(t = 0+) = (gi/gf )1/4pν(t = 0−)

(E4)

Under such a transformation, the initial thermal state, an
isotropic Gaussian, becomes a squeezed state and its sub-
sequent evolution under the Hamiltonian Eq. (E1) leads
to a breathing of each quadrature. In particular

〈p2
ν〉 = 〈p2

ν〉i
(
1 + κ sin2(ωνt)

)
. (E5)

The initial value 〈p2
ν〉i is given by the thermal expectation

value, which reduces to

〈p2
ν〉i = kBT/(~ων) (E6)

for the low-lying modes for which kBT � ~ων .
Injecting Eq. (E2) into Eq. (A8), using Wick’s theorem

and the fact that different modes are uncorrelated we get

〈|ρ̃(q)|2〉 =

∫ ∫
dαdX eiqX

√
n0(α)n0(α+ qtf )n0(α+X + qtf )n0(α+X)

e−
1
2

∑
ν〈p

2
ν〉(θν(α)−θν(α+qtf )+θν(α+X+qtf )−θν(α+X))2 .

(E7)

For ~qtf/m� lc, where lc is the phase correlation length,
one can expand the exponential and 〈|ρ̃(q)|2〉 is obtained
by summing the contribution of each mode. Since the
Legendre polynomials behave as cos((ν + 1/2)x + π/4)
at small x, the contribution of the mode ν is peaked at
q ' ν/RTF .

The predictions of Eq. (E7) may be compared to the
one obtained within the Local density approximation.
Here we focus on the case of thermal equilibrium. We
compute the density ripple spectrum injecting the ther-
mal equilibrium value Eq. (E6) and the mode wavefunc-

tion Eq. (E3) into Eq. (E7). Fig. 6 shows the result for
a cloud whose Thomas-Fermi radius fulfils lc/RTF = 0.2,
where lc = 2~2np/(mkBT ) is the correlation length of the
first order correlation function at the center of the cloud,
and for a time-of-flight tf = 6 × 10−4mR2

TF/~. These
parameters are close to the experimental ones. We com-
pared the results with the LDA, together with the ana-
lytical formula for homogeneous gases Eq. (B3) and we
find excellent agreement. We also compare with the LDA
but using, instead of Eq. (B3), the approximation Eq. 5
of the main text. We find very good agreement as long
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FIG. 6. Test of the local density approximation (LDA) (color
online). The plot shows the density ripples spectrum of a
gas at thermal equilibrium confined in a harmonic poten-
tial. The complete calculation, based on the expansion on
the Bogoliubov modes, whose wavefunctions are given by the
Legendre polynomial, is shown in solid line (blue). It is in ex-
cellent agreement with the spectrum computed within the lo-
cal density approximation (LDA) shown in dashed line (red).
The further approximation of small wavevectors, Eq. (5) of
the main text, injected into the LDA, shown in dotted line
(green), is also in good agreement, for wavevectors fulfilling
qRTF < 50. Calculations are done for a Thomas-Fermi ra-
dius lc/RTF = 0.2 and and time-of-flight tf = 0.015ml2c/~,
where lc = 2~2np/(mkBT ) is the correlation length at the
center of the cloud. These parameters are close to those of
the experimental data.

as qRTF < 50.

Appendix F: Effect of a finite optical resolution and
auto-correlation function

The effect of the imaging resolution is to multiply
the theoretical power spectrum of density ripples with

e−σ
2q2 , where σ is the rms width of the imaging pulse

response function, assumed to be Gaussian. The re-
sulting power spectrum, for a harmonically confined
cloud at thermal equilibrium, is shown in Fig. (7) for

σ
√
m/(~tf ) = 0.85, a value typical for our experiments.

The large q behavior of the power spectrum is highly
dominated by the effect of resolution and only the first
maximum of 〈|ρ(q)|2〉 remains visible. Fitting the exper-
imental power spectrums for clouds at thermal equilib-
rium, we extract both the temperature and the imaging
resolution (see Fig. (2) of the main text). The obtained
rms widths σ, close to 3 µm, are compatible with the
expected values if one takes into account the depth of
focus of our imaging system (' 5µm) and the fact that,
after the the expansion time tf the cloud explores several
tens of µm along the imaging axis. Note finally that the
imaging resolution is irrelevant for the investigation of

qRTF

q
√
h̄tf/m

〈|ρ̃
q
|2 〉

/
(R

T
F
n
p
k
B
T
t f
/
h̄
)
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FIG. 7. Effect of the finite resolution (color online). We con-
sider a clould at thermal equilibrium in a harmonic potential
with the same parameters as in Fig. 6. The power spectrum
for infinite resolution (blue dashed curve) is compared to the
power spectrum expected for a finite imaging resolution (red
solid curve). The effect of the imaging resolution is to mul-

tiply the power spectrum with e−σ
2q2 , where σ is the rms

width of the imaging pulse response function, assumed to be
Gaussian. Here we took σ

√
m/(~tf ) = 0.85, a value close to

that of experimental data.

the dynamics following an interaction quench, since, for
each Fourier component q, we investigate the time be-
havior of the normalised quantity 〈|ρ̃(q)|2〉(t)/〈|ρ̃(q)|2〉i
(see main text): the imaging resolution has no effect on
this normalised quantity.

In our paper, we extract from the data the density rip-
ple power spectrum since it is the relevant quantity that
enable to resolve the collective Bogoliubov modes. Al-
ternatively, one could consider the auto-correlation func-
tion of the density ripples C(u) =

∫
dz〈δn(z)δn(z+u)〉dz,

which is the Fourier transform of the density ripple power
spectrum: C(u) = 1/(2π)

∫
dq〈|ρ̃(q)|2〉e−iqu. In [23], the

authors introduced the normalised auto-correlation func-
tion g2(u) = 1 + C(u)/

∫
du〈n(z)〉〈n(z + u)〉. Fig. (8)

shows g2(u) for the data at thermal equilibrium (before
the quench) shown in Fig. (2) of the main text. A be-
havior very similar to that observed in [23] is recovered.

Appendix G: Beyond instantaneous interaction
switch off: finite transverse expansion time

In the data presented in the main text, the frequency
of the probed longitudinal modes, of the order of cq, is no
more than 0.15× ω⊥. Then, due to the rapid transverse
expansion, interactions during time-of-flight become al-
most instantaneously negligible and are expected to give
only minor corrections to the density ripples spectrum
computed for an instantaneous switching off of the inter-
actions. It is nevertheless interesting to estimate their
effect. This has already been computed in [38], in the
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FIG. 8. Normalised auto-correlation function of the density
ripples. The data set used is the same as that of Fig. (2)(b)
of the main text. Experimental data are shown in green and
the theoretical prediction for a cloud at a temperature T = 55
nK and an optical resolution σ = 2.9 µm is shown in blue.

limit µ � ~ω⊥ and using time-dependent Bogoliubov
equations, i.e. equations of motion linearized in density
fluctuations and phase gradient. The linearized calcula-
tions a priori require that density fluctuations stay small.
Although in our case density ripples at the end of the
time-of-flight have large amplitudes, the Bogoliubov cal-
culations hold for the small q components, which fulfil
q � mlc/(~tf ) and which are considered in our paper.
The condition µ� ~ω⊥ on the other hand is not verified
for the data shown in the main text. We nevertheless
believe that the calculations of [38] give a relevant esti-
mation of the effect of interactions during the time-of-
flight for our data. From results of [38], we find that the
density ripples power spectrum for the small q wavevec-
tors, given by equation (5) of the main text, should be
corrected by the factor

C = (ω⊥tf )
−
(
cq
ω⊥

)2

. (G1)

In all experimental situations C > 0.95, which confirm
that the effect of interactions during the time-of-flight is
small.

Appendix H: Effects which may reduce the
oscillation amplitude

In this section we investigate two effects responsible
for a reduction of the amplitude of the oscillations
of J̄ (see main text), as compared to the theoretical
prediction given by Eq. (6) of the main text. We
first consider the effect of the finite ramp time of the

interaction strength, which reduces the squeezing of the
Bogoliubov modes, as compared to an instantaneous
quench. This effect contributes to the reduction of the
amplitude on the order of 10%. We then investigate the
reduction of the amplitude induced by the binning of the
data with a finite resolution in τ . This effect amounts to
an additional reduction of the amplitude by 18%.

1. Beyond the instantaneous quench: finite ramp
time

In the experiment, the change of the effective inter-
action strength is not instantaneous: to ensure the adi-
abatic following of the transverse motion, we perform a
ramp of the transverse oscillation frequency during a time
tr. The finite value of tr is responsible for a decrease of
the induced squeezing of each mode. In the asymptotic
limit of very large tr, the squeezing vanishes since then,
the modes follow adiabatically the modification of the
interaction strength. In the following we compute the
effect of the ramp on the squeezing of each mode and we
use this result to compute the resulting decrease of the
oscillation amplitude of J̄ .

In order to estimate the effect of the finite ramp time,
we will consider a homogeneous gas for simplicity. The
Bogoliubov modes are then described by the Hamiltonian
of Eq. (1) of the main text, namely

Hq = Aqn
2
q +Bqθ

2
q . (H1)

We regard the effect of a ramp of ω⊥ between the
time t = 0 and the time tr: ω⊥ goes from ωi⊥ to

ωf⊥ = (κ + 1)ωi⊥, as depicted in Fig. (9). The coeffi-
cient Bq = n0~2q2/(2m) is time-independent, while the
coefficient Aq evolves linearly during the ramp (i.e. dur-
ing time interval 0 < t < tr), since it is proportional to
c2, itself proportional to ω⊥. Then, the solution of the
second order equations describing the evolution of θq and
nq during the ramp is given in terms of the Airy func-
tions. In order to investigate the squeezing, it is natural
to introduce the reduced variables

{
θ̃q = θq/θ̄q
ñq = nq/n̄q

(H2)

where θ̄q = (Aq(t)/Bq)
1/4 and n̄q = (Bq/Aq(t))

1/4 are
the time-dependent widths of the ground state. For given
initial values, the values of θ̃q and ñq at the end of the
ramp are

(
θ̃q(tr)
ñq(tr)

)
= M

(
θ̃q(0)
ñq(0)

)
(H3)

where the matrix M has the following components:
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M11 = (κ+ 1)−1/4π
(
−Bi(−δ−2/3)A′i(−(κ+ 1)δ−2/3) +Ai(−δ−2/3)B′i(−(κ+ 1)δ−2/3)

)

M22 = (κ+ 1)1/4π
(
B′i(−δ−2/3)Ai(−(κ+ 1)δ−2/3)−A′i(−δ−2/3)Bi(−δ−2/3(κ+ 1))

)

M21 = (δ−4/3(κ+ 1))1/4π
(
−Bi(−δ−2/3)Ai(−δ−2/3(κ+ 1)) +Ai(−δ−2/3)Bi(−δ−2/3(κ+ 1))

)

M12 = (δ−4/3(κ+ 1))−1/4π
(
B′i(−δ−2/3)A′i(−δ−2/3(κ+ 1))−A′i(−δ−2/3)B′i(−δ−2/3(κ+ 1))

)
(H4)

Here Ai, Bi are the first and second kind Airy functions
and A′i, B

′
i, their derivatives and δ = κ/(trω

i
q) the quench

speed normalized to the initial mode frequency (we re-

call that the quench strength is κ = ωf⊥/ω
i
⊥ − 1). Under

this transformation, the initial isotropic Gaussian distri-
bution transforms into a squeezed distribution, i.e. a
Gaussian elliptical distribution with a squeezing angle α
and ratio between the rms width of the two eigenaxes
equal to the squeezing factor S. In order to find α and
S, let us compute, for any angle β, the width along the
quadrature x̃β = cos(β)θ̃q + sin(β)ñq. Using the fact
that the initial state is a thermal equilibrium state ful-
filling 〈θ̃2

q〉i = 〈ñ2
q〉i ≡ V and 〈θ̃qñq〉i = 0, and using the

transformation above, we find

〈x̃2
β〉 = V {cos2(β)

(
M2

11 +M2
22

)
+sin2(β)

(
M2

21 +M2
22

)

+ 2 cos(α) sin(α) (M11M21 +M22M12)}. (H5)

The squeezing angle α is found by imposing

d〈x̃2
β〉/dβ

∣∣∣
β=α

= 0, which leads to

tan(2α) = −2
M11M21 +M22M12

M2
21 +M2

22 −M2
11 −M2

12

. (H6)

The most squeezed quadrature is x̃α while x̃α+π/2 is the
most anti-squeezed quadrature. The squeezing factor is

S =
√
〈x̃2
α〉/
√
〈x̃2
α+π/2〉. It also writes S = 〈x̃2

α〉/V
since the conservation of the phase-space area ensures√
〈x̃2
α〉〈x̃2

α+π/2〉 = V , and it is evaluated injecting β = α

in Eq. (H5). Results are shown in Fig. (9) for quench
amplitudes κ = 2 and κ = 4 as a function of ωfq tr where

ωfq is the final frequency of the mode. For very slow

modes ωfq tr � 1, one recovers the results expected for

an instantaneous quench : α ' 0 and (S2 − 1) ' κ. For
modes of larger frequency, the effect of the ramp is to
reduce the squeezing and also to rotate its axis.

The post-quench dynamics results in a breathing of the
θ̃q quadrature: 〈θ̃2

q〉 oscillates with an amplitude V (S2−
1)/S. Coming back to the variable θq, the evolution at
times t > tr writes

〈θ2
q〉(t) = 〈θ2

q〉i
√
κ+ 1

Sq

(
1 + (S2

q − 1) sin2(ωfq (t− tr) + αq)
)

(H7)
where the indice q in S and α indicates these quantities
depend on q. As seen in Fig. (9), the angle αq is very close
to ωfq tr/2, for moderate values of ωfq tr. Injecting this
value into Eq. (H7), we find that it amounts to shifting
the time reference to tr/2. We perform this shift when

(a)

0 tr

ωf
⊥

ωi
⊥

t

ω⊥

κωi
⊥ ñq

α

σ1

σ2

σ1/σ2 = S

θ̃q

(b)

ωf
q tr

α
/
(ω

f q
t r
/
2
)

(d)
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1.1

1.05

1
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0.9

ωf
q tr

(S
2

−
1
)√

κ
+
1
/
(S

κ
)

(c)

1.20.80.40

1

0.9

0.8

FIG. 9. Effect of the interaction strength ramp on the squeez-
ing of longitudinal modes. The time sequence is shown in (a).
An example of the phase space distribution at the end of the
ramp is shown in (b): the 1/

√
e line of the Gaussian distribu-

tion is plotted. The squeezing factor S is the ratio between the
rms widths along the anti-squeezed and the squeezed direc-
tions. The curved arrow shows the direction of rotation under
free evolution. Quantitative results are shown in (c) and (d)

for a quench strength κ = ωf⊥/ω
i
⊥ − 1 = 2 (solid lines) and

κ = 4 (dashed lines). (c) shows
√
κ+ 1(S2 − 1)/(Sκ), which

gives the amplitude of the resulting breathing oscillations nor-
malized to the amplitude for an instantaneous quench (see
text), versus ωfq tr where ωfq is the final frequency of the mode.

The squeezing angle is shown in (d), normalized by ωfq tr/2.

analyzing the data, in other terms the reduced variable
τ is τ = cq(t− tr/2).

Let us now consider the evolution of the density-ripples
power spectrum 〈|ρ̃q|2〉(t). For small q, 〈|ρ̃q|2〉(t) is pro-
portional to 〈θq|2〉(t) such that the evolution of 〈|ρ̃q|2〉(t)
is given by Eq. (H7). This leads to,

J(q, τ) =

√
κ+ 1

Sq

(
1 + (S2

q − 1) sin2(τ)
)
. (H8)

Let us now investigate the quantity J̄(τ), defined in the
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τ/π

J̄
(τ
)

43.532.521.510.50

3

2.6

2.2

1.8

1.4

1

FIG. 10. Effect of the finite ramp time of the interaction
strength for a homogeneous gas. The expected behavior of
J̄ (solid line) is compared to the case of an instantaneous
ramp (dashed line). Here we consider a gas of Rubidium
atoms at conditions close to the experimental ones. More
precisely, the linear density is n0 = 630 atoms per µm, the
initial transverse oscillation frequency is ω⊥ = 2π × 1.5 kHz,
the quench strength is κ = 2 and the ramp time is tr = 0.7 ms.
The range of q values used to compute J̄ is q ∈ [0.1, 0.5]µm−1

and the range of measurement times is t ∈ [tr/2, 6ms].

main text for experimental data. Here we will assume
that the measurement times are spread over [tm, tM ] and
we denote h(t)dt the number of points in the time inter-
val [t, t + dt]. The q values are assumed to be equally
spaced, as in the case of a Fast Fourier Transform, and
only q values in the interval [qm, qM ] are considered. We
assume that J̄(τ) is obtained by binning in τ the collec-
tion of data with a bin size ∆ small enough so that, for
all measurement times t, J(q, τ) is about constant in the
interval q ∈ [τ/(ct), (τ + ∆)/(ct)]. Then, one has

J̄(τ) =
1∫

h(t)dt∆/(ct)

∫
h(t)dtJ(q = τ/(ct), τ)∆/(ct),

(H9)
where the integrals are evaluated between t1 and
t2, where t1 = Max(tm, τ/(cqM)) and t2 =
Min(tM, τ/(cqm)). Typically, in the experiment small
times are sampled more densely than large times. Taking

h proportional to 1/t, we obtain

J̄(τ) =
1∫
dt/t2

∫
dt
J(q = τ/(ct), τ)

t2
=

∫
dqJ(q, τ)

q2(τ)− q1(τ)
,

(H10)
where q1 = max(τ/(c)tM, qm) and q2 =
min(τ/(c)tm, qM).

The predicted time evolution of J̄ is shown in Fig. (10)
for parameters close to that of the experimental data
shown in the main text. The amplitude of the first oscil-
lation is decreased by about 10%.
2. Finite width of the convolution function used in

data processing

The data shown in the inset of Fig. (3) of the main
text correspond to a data set with an exceptionally good
signal over noise. In general, the spread of the data
points corresponding to a given value of τ (and thus
corresponding to different times t and wavevectors q) is
as large as about 50%. In such conditions, a binning
of the data as a function of the reduced time τ = cqt
with a bin size sufficiently large to accommodate many
data points is required in order to increase the signal
over noise. As describe in the main text, we use a
“smooth” binning: we compute the weighted average of
the data, J̄ , with a Gaussian cost function of rms width
∆. For a very dense data set, we can define the local av-
erage value J̃(τ) =

∑
i,τi∈[τ,τ+dτ ] Ji/dτ , where the sum

is done on the data set and dτ is much smaller than
∆. Then J̄ corresponds to the convolution of J̃ with
a convolution width ∆. This convolution reduces the
amplitude of the oscillations. To estimate this ampli-
tude reduction, let us disregard the small damping of the
oscillations coming from the cloud inhomogeneity (see
section 3) and thus consider data which would follow

the oscillatory behavior J̃ = A sin2(τ). The smoothing

J̄(τ) =
∫∞
−∞dτ

′J̃(τ ′) e−(τ ′−τ)
2
/(2∆2)/(

√
2π∆2) reduces

the amplitude to A′ = Ae−2∆2

. For ∆ = 0.1π, as used for
the data analysis shown in the main text, the amplitude
is reduced by 18%.
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