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Abstract. Directional plasmon excitation and SERS emission were demonstrated

for 1D and 2D gold nanostructure arrays deposited on flat gold layer. Extinction

spectrum of both arrays exhibits intense resonance bands that are red shifted when the

incident angle is increased. Systematic extinction analysis of different grating periods

revealed that this band can be assigned to a propagated surface plasmon of the flat gold

surface that fulfills the Bragg condition of the arrays (Bragg mode). Directional SERS

measurements demonstrated that the SERS intensity can be improved by one order of

magnitude, when the Bragg mode positions matched with either the excitation or the

Raman wavelengths. Hybridized numerical calculations of Finite Element Method and

Fourier Modal Method also proved the presence of Bragg mode plasmon and illustrated

that the enhanced electric field of the Bragg mode is particularly localized on the

nanostructures regardless of their size.
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1. Introduction

Metallic nanostructures have proved to be very useful for various applications owing to

their capability to confine electromagnetic (EM) fields at the nanometric scales by the

excitation of surface plasmon resonances (SPR) [1, 2, 3, 4]. One of the most relevant

applications of such effect is the surface enhanced Raman scattering (SERS), which

is a highly sensitive spectroscopic technique for the detection of molecules and the

analysis of their chemical structures [5, 6, 7, 8, 9, 10, 11]. In fact, the SERS effect

has been observed for a large variety of metallic nanostructures [12, 13, 14, 15, 16, 17],

fabricated by various techniques such as chemical synthesis, electrochemical etching and

nanolithography[18, 19, 20, 21, 22, 23, 24, 25, 26].

Recently, directionality of SERS in regularly-structured or flat metal substrates has

been reported in several publications as a useful technique to control SERS efficiency.

First, basic angular dependence of the SERS signal was reported for flat metallic surface

in Kretschmann configuration. In such works, it was shown that the maximum of SERS

intensity is reached when the angle matches the angle of the SPR excitation of the flat

metal surface [27, 28, 29]. In this case, the SERS signal dependence is only due to

the angular dependence of the plasmon excitation. For nanostructured surfaces, some

advanced angular plasmonic and SERS studies have been performed. For instance, Chu,

Y. et al. have studied a double resonance SERS substrate,[30] namely a combination of a

gold nanodisks array and a gold film with a thin dielectric spacer. This SERS substrate

shows that local field enhancement around the nanodisk is very sensitive to the excitation

angle. This effect is essentially due to a coupling of the localized surface plasmon

(LSP) of the gold nanodisks with the propagative surface plasmon (PSP) of the gold

film. Moreover, Baumberg et al. have reported a comprehensive extinction and SERS

angular study on two-dimensional nanoholes array in a gold film [31]. A directionality

of the SERS emission was found and explained by the excitation of plasmonic modes

originating from the periodicity of the nanoholes. Thus, these previous studies featured

SERS directionality as a result of directional excitations of complex surface plasmon

modes. However, their general behaviors have not been clearly determined yet because

of the lack of systematic studies of their structural parameters. In addition, little were

pointed out for the coupling of SERS emission processes with such plasmon modes.

In this paper, we present a complete study of the angular dependence of the plasmon

excitation and of the SERS signal. This study has been performed with 1D and 2D

gold nanostructures arrays deposited on flat gold film, which sustain both LSP and PSP.

In order to examine complex surface plasmon modes excited in the fabricated SERS

substrates and their contribution to the SERS intensities, the grating period of the

gold nanostructure array as well as the excitation wavelength have been systematically

changed. The nanostructured arrays were realized by electron beam lithography that

allows the fabrication of regular and reproducible nanostructures leading to predictable

EM field enhancement[32, 33, 34, 35, 36, 37, 38, 39, 40, 41]. Numerical simulations were

carried out to calculate the EM field intensity and its near-field distribution, and were
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Directional SERS on gratings 3

Figure 1. (a) Schematic of the nanolines and nanodisks substrates. (b and c) SEM

images of nanolines (b) and nanodisks (c) with a period of 400 nm. The scale bars are

500 nm long. (d) Schematics of the SERS and extinction configuration with respect

to the substrate. For SERS, both excitation and collection are done with a 10×
microscope objective (NA = 0.25). For extinction measurement, the excitation is done

in transmission configuration using white light illumination from below the sample

whereas the transmitted light is collected with the 10× objective. For all experiments,

the excitation polarization is transverse magnetic (TM) and the wave-vector K is

parallel to the grating axis, meaning an azimuthal angle of 0o.

compared with our experimental results. In this paper, we discuss the directional SERS

as an intrinsic property of all periodic structures, which can be simply explained by the

excitation of PSP which satisfy the Bragg condition of the arrays at certain angle of

incidences. This work demonstrates that an intensity gain of one order of magnitude can

be obtained just by tilting the sample and that the collection angle must be optimized

to reach the highest SERS signals.

2. Results and discussion

2.1. Directional extinction analysis

As shown on the figures 1a, b and c, we used two different nanostructures for these

studies: nanolines (30 nm in height and 100 nm in width) and nanodisks (30 nm in height

and with a diameter of 220 nm) with an underlying thin gold film (30 nm in height).

The width or the diameter of the nanostructures is fixed for all experiments. Directional

extinction spectra were recorded using a low numerical aperture objective (NA = 0.25)

and by tilting the sample with respect to the optical axis as shown in Figure 1c.

As shown on Figure 2a, the extinction spectra of nanoline array exhibit two resonance

peaks: one between 650 and 800 nm and the other beyond 850 nm. The positions of both

peaks are highly dependent on the excitation angle and on the period of the nanolines

arrays (Figure 2b). The resonance position of both peaks undergoes a linear redshift

with the angle of incidence. One can also notice that the slope of the curves increase
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Figure 2. (a) Extinction spectra for different θ angles on nanolines with a 400 nm

grating period. (b) Plasmon resonance position as a function of θ angle for three

different periods for nanolines and (c) for nanodisks with a 400 nm grating period. The

solids lines represent the analytical solution of equation 2 for the corresponding grating

periods.

when the array period increases from 300 nm to 500 nm. We can then observe a clear

dependence of the resonance with the measurement angle and the array period. Similar

behavior is also observed for the 2D array with nanodisks: linear dependence of the

resonance position with the measurement angle. In this case, resonance positions of both

the peaks are close to those measured for the 1D array of nanolines. Thus, it indicates

that the resonance position is independent of the shape of the nanostructure, but is only

related to the period of the array.

Similar phenomenon has been reported by Xu et al. on 1D metal grating structures

[42]. They explained the shift of resonance position as an excitation of different modes

of the PSP. In our case, the excitation of the two plasmonic modes could be explained

as follows. Because of the presence of the flat gold film below the grating[43, 44], PSP

can be excited. Its wave-vector in the plane parallel to the metal-dielectric interface (kx)

can be written as: [45]

kspp = k0

√√√√ n2
d εm(ω)

n2
d + εm(ω)

(1)

where εm(ω) is the complex permittivity of the metal, k0 = 2π/λ is the free space

Page 4 of 12

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Directional SERS on gratings 5

wave-vector for the wavelength λ and nd is the refractive index of the dielectric-medium.

nd is equal to na (refractive index of air), when the PSP is excited at the metal-air

interface and is equal to ng (refractive index of the glass substrate) when the PSP is

excited at the metal-glass interface.

When the wave-vector of the PSP matches the Bragg vector (kB = 2π/P , where P

is the grating constant) of the array, a highly confined electromagnetic field is created

around the nanostructures due to the constructive interference of the PSP at the positions

of the nanostructures. This mode is called the Bragg mode (BM) in analogy to Bragg

diffraction in periodic structures. The condition for the excitation of the BM can be

written as [46]:

kBM = kspp ± kB (2)

where kBM is the in-plane wave-vector given by k0 sin θ. The analytical solution

of equation 2 (shown as solid lines on Figures 2b and 2c) is in good agreement, for all

periods and geometries, with the experimental position of the plasmon resonances. This

confirms that the resonance only depends on the array period and on the measurement

angle and not on the nanostructure shape. The mode at lower wavelengths (BMa) is due

to the fulfillment by the PSP of the condition at the metal-air interface, and the mode

at higher wavelengths (BMg) is due to the fulfillment of the condition at the metal-glass

interface. Bragg modes of higher order are not observed since the grating periods are

smaller than the wavelengths of our measured spectral range. It should be noted that

the LSP of both nanolines and nanodisks are visible around 550 nm and their position

exhibit no angular dependence (data not shown).

2.2. Directional SERS intensity Analysis

To measure the SERS signal, thiophenol was used as a probe molecule because of its high

Raman cross-section and the strong affinity of the thiol group towards the gold surface.

Such molecule also creates homogenous self-assembled monolayer giving a reproducible

SERS signal [47]. Several intense Raman peaks of thiophenol are observable at 419, 1000,

1024, 1075 and 1575 cm−1. The most intense band is observable at 1075 cm−1 and was

used to measure the SERS intensity. Figure 3 shows the SERS spectra of thiophenol

recorded on nanolines with a grating period of 400 nm for two excitation angles, θ = 0o

and 34o (Excitation wavelength = 660 nm). A clear increase of the SERS signal is

noticed for the excitation angle of 34o indicating an angular dependence of the SERS

intensity.

To demonstrate this, the SERS intensity was experimentally recorded as a function

of the incident angle θ in the range [0, 50o] at three different wavelengths (633, 660 and

785 nm) on the nanolines array for three different grating periods (300, 400, 500 nm),

and on the nanodisks array for a grating period of 400 nm (Figure 4).

Strong variations of the SERS intensity were observed depending on the angle with

intensity peaks at specific angles. At these angles, the intensity is between five and
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Figure 3. SERS spectra of thiophenol recorded on the nanolines (width = 100 nm

and grating period = 400 nm) at 660 nm. Excitation angles θ are 0o (solid black line)

and 34o (dashed red line).

ten times higher than the one measured at normal incidence (θ = 0o). The systematic

study reveals that large intensity peaks for the SERS signal are obtained when the BMa

are excited whereas smaller peaks for the SERS signal is observed, when the BMg are

excited. Hence, it can be considered that the improvement of SERS intensity at a certain

incidence angle is caused by the excitation of the BMa. The angle of incidence which

satisfies the condition for excitation of the BM increases, when the excitation wavelength

is redshifted or when the grating period is increased.

The smaller values of the SERS intensity at the positions of BMg are due to the

confinement of the EM near-field of the BMg at the metal/glass interface. Furthermore

its decay length is not long enough to produce a high field enhancement at the interface

between gold and air, where the thiophenol molecules are located. We have also observed

that the extinction values corresponding to the BMg were lower than those for the BMa.

It is also interesting to notice that we observe a second maximum at the angle,

where the emission wavelength (λR) matches the BM resonance conditions marked by

vertical dashed lines. This indicates that the Raman scattering couples with the BMs.

Thus the Raman Scattering depends on the directional emission of BMs.

Finally, we found similar behaviors between 1D nanolines (Figures 4 d,e,f) and 2D

nanodisks (Figures 4 j,k,i), when they have the same 400 nm grating period even though

they have different geometries. Those angular dependencies of the SERS intensity imply

that they would be sensitive to only the grating period, but not to the geometry of the

nanostructure.

In order to explain the experimental results, the angular dependence of the SERS

intensity was numerically simulated based on the local EM field intensity calculation

using the hybrid method of the Finite Element Method (FEM) and the Fourier Modal

Method (FMM)[48, 49]. The SERS intensity is generally considered to be proportional

to the local EM field intensities at the excitation wavelength (λex) and the Raman
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Figure 4. Experimental (dots) and numerical (solid red line) angular dependences

of the SERS intensities at different excitation wavelengths (633, 660 and 785 nm) on

nanolines (a–i) with grating periods from 300 up to 500 nm and on nanodisks (j–l) with

a grating period of 400 nm. Vertical lines indicate the angles of BM excitation at the

excitation (solid line) and emission (dashed) wavelengths.

scattering wavelength (λR). By introducing the excitation angle θex and the Raman

collection angle θR, the SERS intensity ISERS in our experiments can be analytically

expressed as [51]:

ISERS ∝ E2
ex(λex, θex)× E2

R(λR, θR) (3)

where E2
ex and E2

R are the local EM field enhancement normalized by the EM field

intensity of incident light E2
0 at the excitation wavelength (λex) and Raman emission

wavelength (λR) respectively [50, 51]. θ0 and θR are same angles in our case. The right

side of equation 3 represents the SERS gain in the EM enhancement mechanism.
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Directional SERS on gratings 8

Figure 5. Spatial distributions of the calculated SERS gain for 100 nm width nanolines

and for 220 nm diameter nanodisks at 660 nm excitation. Periodicity is set as 400 nm.

The incidence and emission angles θ were 0o (a, b) and 34o (c, d). The excitation

polarization is transverse magnetic (TM) and the wave-vector K is parallel to the

grating axis.

In Figure 5, spatial distributions of the calculated SERS gain at the gold-air interface,

where the molecules are adsorbed, are illustrated for the 100 nm width nanolines and the

220 nm diameter nanodisks considering a grating period of 400 nm. For the calculation,

the excitation wavelength at 660 nm was used, and the incident angles were taken at 0o

and 34o to the plane of normal incidence. The 34o angle corresponds to the maximum

SERS intensity for these specific experimental conditions (Figures 4 e and k). When θex
and θR are 0o, the effective SERS gain is only observable at the edge of nanostructures,

which can be assigned to a small contribution of LSP excitation. In contrast, when θex
and θR are 34o, a SERS gain stronger by one order of magnitude is observed compared to

the 0o angle. Moreover, the SERS gain comes from the entire nanostructures and is not

limited to the borders. In addition, the SERS signal is also enhanced on the gold film

between the cylinders. Although the signal from the nanostructures would dominate the

SERS intensity, the contribution from the flat surface might not be ignored. This means

that nearly all the molecules deposited on the gold surface contribute to the SERS signal

due to the excitation of the BM.

The experimentally obtained angular dependency of SERS intensity was calculated

from the integral of the SERS gain over the whole surface shown in Figure 5. The total

SERS gain is as follows:

Gtotal =
∫

Sstruct

E2
ex(λex, θex)× E2

R(λR, θR) dS (4)
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The calculated Gtotal is superimposed in Figure 4 (red solid lines). The numerical

calculations reproduces the experimental peak positions and the angular dependency

in each conditions. Therefore, the coupling of the excitation and emission lights with

the BM is the main factor that improves the SERS signal in our substrate. However,

for the experimental peaks, the intensity contrast is much lower and the full widths

at half maximum of the peaks are larger than the ones observed with the simulated

peaks. This could be explained by the fact that we used a microscope objective with a

non-zero NA, which means that the excitation and the collection angles have a certain

distribution. Thus, the decrease of the contrast and the broadening of the peaks result

from the lower angular resolution. In addition, the roughness of the nanostructure is

not taken into account in the simulation, and can also induces a higher SERS signal

at unexpected angles, decreasing the experimental intensity contrast. However, these

simulations confirm the high directivity of the SERS signal for specific and precise angles.

3. Conclusion

We demonstrated that in the case of a nanostructure grating over a metallic film, the

propagating surface plasmon couples with grating, which results in the Bragg mode. Due

to this coupling, there is a specific resonance angle for each wavelength of interacting

light that induces a strong increase of the SERS signal. This induces a directivity of the

SERS emission and thus might be useful for future applications in SERS. Thus, in a

setup where one needs to work at long distances, the knowledge of this behavior might

be critical for the optimization of the SERS signal.

4. Methods

Thin gold layer of 30 nm was deposited on a glass substrate by electron beam

evaporation. Then gold nanostructure arrays were designed on the gold film by

electron beam lithography following by a lift-off process. Surface functionalization

was done by immersing the substrate for 150 min into a solution of thiophenol (10−4 M) 
dissolved in ethanol. SERS spectra were recorded with commercial confocal Raman

microspectrometers with a set of continuous wavelength lasers (λ = 633, 660 and 785 nm).

A Horiba Scientific LabRam spectrometer was used at 633 nm and a Horiba Scientific

Xplora spectrometer was used at 660 and 785 nm. For each spectrometers, the Raman

measurements were carried out in backscattering configuration through a 10× objective

(NA = 0.25). Incident laser power was measured at the sample position and adjusted to 3
mW with a neutral density filter (ND) for all laser wavelengths. Extinction spectra were

recorded with the same spectrometer as SERS measurements, after removing the edge

filters. A halogen lamp was used as white light source in transmission configuration (figure

1). A reference spectrum was acquired on the flat gold surface for each incident angle far

from the nanostructures and the extinction was calculated as the logarithm of the ratio

between reference spectrum and the spectrum acquired on the grating log (I0/I).
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