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Light transport in periodic waveguides coupled to two-level
atoms is investigated theoretically. By using optical Bloch
equations and a photonic modal formalism, we derive a
convenient semi-analytical expression for calculating the
scattering matrix of single atoms trapped in periodic wave-
guides. The expression that holds for both photonic and
plasmonic waveguides represents a basic building block
toward the study of collective effects arising from photon-
mediated multi-atom interactions in periodic wave-
guides. © 2015 Optical Society of America

OCIS codes: (270.0270) Quantum optics; (290.0290) Scattering;

(350.4238) Nanophotonics and photonic crystals.
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Nanophotonic structures are routinely used to enhance light-
matter interactions by modifying the density of virtual photon
states. New hybrid quantum systems, combining cold atoms
and nanostructured devices, have recently emerged. The com-
bination of excellent quantum-coherent properties with a very
flexible platform for implementing strong interactions at sub-
wavelength scales is expected to go beyond classical settings of
all-solid-state QED with quantum dots [1]. Examples include
ultra-thin unclad optical fibers [2–4], photonic-crystal cavities
[5], and more recently photonic periodic waveguides, for which
the strong field enhancement at the band edge bears a high
potential for atom-photon interaction [6,7].

Collective effects mediated by guided light in hybrid wave-
guides arise from multiple scattering between distant atoms
through guided photons. Potentially any geometry can be an-
alyzed provided that one knows propagating operators between
atom pairs, scattering operators of individual atoms, and termi-
nation operators that describes how light is scattered at the
waveguide facets. Indeed, modal formalisms that describe all
the operators in the natural electromagnetic eigenstates
(Bloch modes) of the waveguide are ideally suited to analyze
collective phenomena in macroscopic-hybrid waveguides that
represent a real challenge for numerical methods that rely
on a full discretization of Maxwell’s differential equations.
Bloch-mode formalisms for propagation and termination oper-
ators have already been successfully developed in the context of
light localization in photonic-crystal waveguides [8–10]. Here

we expand this work, present a theoretical derivation of the
scattering matrix of one atom [11], and propose semi-analytical
expressions that can be easily calculated. The derivation accu-
rately considers the phase of transmitted and reflected photons,
the saturation of the atom for multiphoton incident states, and
radiation due to imperfect atom-waveguide couplings.

We maintain the theoretical discussion at a general level,
potentially with waveguides composed of lossy and dispersive
materials. The sole assumption is that the waveguide is made of
reciprocal material. The scattering-matrix derivation can be
performed with a semi-classical formalism, but we rely here
on a fully quantum treatment including a quantization of
the atom and photon field. The approach is based on a combi-
nation of electromagnetic Bloch-mode-expansion techniques
[12] with the optical Bloch equations for the atom density-ma-
trix operator [13]. The former provides an accurate electromag-
netic description of the system, including the local electric field
and local density of electromagnetic states, and the latter allows
us to describe the population evolution of the quantum system,
assumed to be a two-level system. Both formalisms are already
documented in the literature, and we do not present them again
hereafter. Rather, we focus on how they are coupled to obtain
the scattering matrix expression. The derivation is inspired
from earlier theoretical works on the coupling of quantum
emitters with translation-invariant dielectric [11,14,15] or met-
allic [16,17] waveguides, and coupled-resonator guides [18,19].

Let us assume that the atom is not in motion and can be
considered as a two-level system with ground and excited states
(jgi, jei) separated by frequency ωA, and that it is initially in the
ground state. The atom is driven at frequency ωL by a coherent
laser field Einc � αẼ�1��r;ωL�, with Ẽ�1� the normalized fun-
damental forward-propagating Bloch mode of the waveguide
(jαj2 represents the power flow of the driving field); see Fig. 1.

The interaction between the photons and the atom is de-
scribed by a classical Hamiltonian:

Ĥ �
Z

d3r
Z

∞

0

f̂��r;ω�f̂�r;ω�ℏωdω

� 1

2
ℏωAσ̂z − �μ · Ê−�rA�σ̂ � σ̂�Ê��rA� · μ�: (1)

The first term describes the electromagnetic field and the me-
dia, with f̂�r;ω� and f̂��r;ω� the bosonic vector field operators
for the elementary excitations of the system; the second term
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accounts for the energy of the atom, with σ̂z � jeihej − jgihgj
being the population difference operator; the third term ac-
counts for the interaction between the atom and the total elec-
tric field, μ being the transition electric dipole moment and σ̂
the coherence operator. The electric field operator Ê��rA� at
the position rA of the atom consists of three contributions: the
vacuum field operator, the quantized emission field of the
atom, whose main ingredients are driven by the imaginary part
of the classical Green tensor of the periodic waveguide and the
bosonic vector field operators, and the externally driving field.
By assuming that the driving field is not just a single photon,
but a coherent state at frequency ωL that can be treated as a
classical complex field, the nonlinear response of the atom
can be formally mapped to an external Rabi frequency into
the optical Bloch equations; see details in [20] and in the
method section in [16]. Under the rotating wave approxima-
tion, the dynamics of the expectation values is given by optical
Bloch equations, and the expectation value of the total (coher-
ent) field operator at the laser frequency can be casted into two
terms [13]:

hE�r�i � Einc�r� � hEat�r�i; (2)

where hEat�r�i is the expectation value of the field radiated by
the atom. This general result that is valid for weak atom-field
coupling regimes is not restricted to our specific waveguide
geometry [13]. If one further neglects the frequency shift
(the Lamb shift in a vacuum electromagnetic environment)
due to the self-action of the induced dipole and decoherence
effects, the Rabi frequency depends only on the driving laser
field at the atom position, and the expectation value for the
induced dipole moment reads as

hdi � −2jμj2
ℏ

Einc�rA;ωL�
�2δ − jγ�

4δ2 � 2jΩj2 � γ2
; (3)

where δ � ωL − ωA is the detuning between the laser and atom
frequencies, γ � 2ω2

Ljμj2∕�ε0ℏ�ut · Im�G�rA; rA;ωL�� · u de-
notes the modified spontaneous decay rate of the excited state
[13], ε0 the vacuum permittivity, and Ω � �2μ∕ℏ�u · Einc is
the complex external Rabi frequency. In the previous expres-
sions, u denotes the polarization unit vector Einc � E incu of
the photon at the atom position, and G�r; r 0;ωL� is the
Green tensor in the presence of the waveguide, corresponding
to the electric field response at r to a point dipole current source
at r 0.

To solve for Eqs. (2) and (3), we expand the field radiated by
the atom in the complete set of optical Bloch modes, including
a discrete set of truly guided modes and a continuum of

radiation modes. The expectation value of the total field oper-
ator is written as

z > zA; hE�r�i �
X
p�1;N

αtpẼ�p��r� � continuum; (4a)

z < zA; hE�r�i � αẼ�1��r��
X
p�1;N

αrpẼ�−p��r�� continuum;

(4b)

where zA is the z-coordinate of the atom, rp and tp are the re-
flection and transmission amplitude coefficients, and p and N
denote the label and the number of truly guided modes, respec-
tively. To calculate the amplitude coefficients, one relies on a
biorthogonal form that handles the orthogonality between
bound and continuum states. The form can be mathematically
derived from Maxwell’s equations with Lorentz reciprocity
theorem, with some theoretical difficulties for the continuum
states that are well documented in textbooks on waveguides
[21]. It was generalized to periodic waveguides in [12], and
by introducing complex spatial coordinate transforms that
map the open problem with the associated continuum of radi-
ation states to a closed problem with a countable number of
discrete states, called quasi-normal Bloch modes (QNBMs),
the theoretical difficulties are removed in the numerical imple-
mentation. Thus the formalism accurately accounts for cou-
pling to radiations modes.

We conveniently normalize the QNBMs such thatR �Ẽ�−p��r�×H̃�p��r�− Ẽ�p��r�×H̃�−p��r�� ·dS�4P, where the
integral is performed over any cross-section plane of the
waveguide and P � 1. For truly guided Bloch modes operating
below the cladding light line and for nonabsorbent materials,
Ẽ�−p� � −�Ẽ�p��� and H̃�−p� � �H̃�p���, such that guided
Bloch-modes have unit power flow. With this normalization,
the scattering coefficients are obtained by considering that
the atoms act as electric-dipole sources whose radiation
emission feeds the waveguide QNBMs, and we have
αtp � �jωL∕4P�hdi · Ẽ�−p��rA� � δ�p�, with δ�p� � 1 if
p � 1 and 0 otherwise and αrp�� jωL∕4P�hdi ·Ẽ�p��rA� [12].
Using hdi from Eq. (3), we obtain

tp � σ0
−jε0c
4P

γ0�2δL − jγ�
4δ2L � 2jΩj2 � γ2

Ẽ�1��rA� · Ẽ�−p��rA� � δ�p�;

(5a)

rp � σ0
−jε0c
4P

γ0�2δL − jγ�
4δ2L � 2jΩj2 � γ2

Ẽ�1��rA� · Ẽ�p��rA�; (5b)

where σ0 � 6πc2∕ω2
A denotes the extinction cross-section on

resonance of an isolated two-level system, and γ0 �
ω3
Ajμj2∕�3πε0ℏc3� is the natural decay rate of the atom in a

vacuum (c is the light speed). Equations (5a) and (5b), which
constitute the main result of the present work, are general ex-
pressions that are valid for any photonic or plasmonic wave-
guides. They can be extended to incorporate dephasing and
nonradiative decays [13].

For atoms with prescribed quantization axes (or oriented
molecules), the induced dipole is not parallel to the incident
electric field. This important case can be treated as well
by replacing jμj2Einc by �μ · Einc�μ in Eq. (3) with slightly
modified expressions for γ and Ω, γ � 2ω2

L∕�ε0ℏ�μ�t ·

Fig. 1. Schematic of the hybrid system. An atom at rA trapped near
a periodic waveguide (made from reciprocal materials) and initially in
its ground state. It is driven by a guided multiphoton coherent state
Einc propagating forward at frequency ωL. The scattering matrix for
one atom [Eq. (6)] relates the scattered amplitudes, a 0 and b, of
the Bloch mode to the incident ones, a and b 0.
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Im�G�rA; rA;ωL�� · μ andΩ � �2∕ℏ�μ · Einc. This leads to re-
place Ẽ�1� by �μ · Ẽ�1�∕μ · μ�μ in Eq. (5).

Hereafter for simplicity, we focus on the amplitude coeffi-
cients of the incident Bloch mode only. The scattering matrix
for one atom, which relates the scattered mode amplitudes, a 0
and b, to the incident ones, a and b 0 (see Fig. 1), has the
following form:
�
a 0

b

�
�
�
t r 0

r t 0

��
a

b 0

�
�
�
1�ηẼ�1� · Ẽ�−1� ηẼ�1� · Ẽ�1�

ηẼ�−1� · Ẽ�−1� 1�ηẼ�1� · Ẽ�−1�

�
;

(6)

with η�σ0
−jε0c
4P

�2δL∕γ0−jγ∕γ0�
4�δL∕γ0�2�2�Ω∕γ0�2��γ∕γ0�2 . The Bloch-mode fields

are taken at the atom position rA. Equation (6) has several
implications:

– t and t 0 are equal (reciprocity).
– In sharp contrast to translation-invariant waveguides for

which Ẽ�1� · Ẽ�1� � Ẽ�−1� · Ẽ�−1� because of translation sym-
metry, r and r 0 are different in general. Thus, the scattering
matrices of periodic and translation-invariant waveguides are
fundamentally different, and the formulas directly inspired
from classical waveguide results in recent works [6,22] clearly
overlook the phase difference between r and r 0.

– For nonabsorbent dielectric waveguides, since
Ẽ�−1� � −�Ẽ�1���, r 0∕η � r∕η, and jr 0j2 and jrj2 are equal.
Perhaps counter-intuitively, this holds regardless the atom
location in the unit cell of the waveguide.

– For metallic waveguides such as nanoparticle chains that
offer deep subwavelength transverse confinements [23], jr 0j2
and jrj2 are different.

– For small driving fields, saturation is negligible, and the
spectral width is given by γ. As one tunes the band edge near the
atomic transition line, the total decay rate is mainly driven by
the coupling to the waveguide and becomes proportional to the
group index [6].

We consider a periodic nanowire [24] formed by a 1D chain
of Si3N4 boxes in vacuum. With this example shown in the
inset in Fig. 2, our intention is not to provide a thorough
discussion of a realistic geometry with a complete design

including the evaluation of Casimir–Polder forces and trapping
forces with detuned lasers [6,22]. Rather, we intend to illustrate
the meaning behind Eq. (6) on a simple example. All dimen-
sions are given in the caption. For TE-like horizontal polariza-
tion, the nanowire supports a truly guided Bloch mode, and the
conduction-band-edge energy coincides with the Cesium D2

transition line at 852 nm.
Figure 2 shows typical reflection spectra obtained for three

values of the group index ng � 3, 10, and 80. At resonance and
low excitation powers (black dashed curves), the photon is com-
pletely reflected for large ng ’s. As the band edge frequency is
tuned near the atomic transition frequency, the atom serves
as an ultranarrow filter, and the incident laser field is almost
completely reflected. The lineshape is the same as when a wave-
guide is coupled to a monomode cavity [25], but more complex
Fano lineshapes can be obtained for multimode waveguides, as
can be deduced from Eqs. (5a) and (5b). The red solid curves
are obtained for an averaged guided power of ≈5 pW. For this
power that corresponds to 2.1 mW∕cm2, saturation effects
cannot be neglected [26], and the coherent backscattering at
the atomic transition frequency is reduced. At larger incident
powers (Ω ≫ γ0), most photons are directly transmitted,
jtj2 → 1. Interestingly, we observe that saturation effects for
the same averaged guided power are prominent at small ng ’s.
This holds because the external Rabi frequency scales as
Ω ∝ n1∕2g , whereas the spontaneous emission rate of the atom
scales at a much faster rate, γ ∝ ng .

The main difficulty of the previous treatment comes from
calculating the emission decay into radiation modes [12],
which requires accurate outgoing wave conditions in the peri-
odic directions. Although PML-like absorbing boundaries in
periodic media have been recently optimized [27], any termi-
nation breaks periodicity, and numerical calculations relying on
a 3D sampling is inevitably contaminated by termination back-
scattering, especially for small group velocities. Thus in prac-
tice, it is easier to consider finite waveguides. For instance, in a
recent theoretical work [22], the classical Green’s tensor is not
calculated for fully-periodic (infinite) waveguides, but for finite
ones formed by a finite number of unit cells. Consequently, the
predicted spontaneous decay rate displays a series of spurious
resonance peaks, which depends on the somewhat arbitrary
choice of the waveguide length and terminations and from
which it is difficult to infer the actual decay rate of the periodic
system.

We overcame the issue by using an approach that does not
rely on numerical meshing in the periodic direction, but rather
on an analytical expansion in the QNBM basis [12]. The ap-
proach proposes virtually “exact” predictions for γ, but in turn it
relies on uncommon advanced numerical tools and on calcu-
lations that need to be repeated for every atom position. Thus,
it is advantageous to consider an approximate treatment, in
which the spontaneous decay rate γrad in radiation Bloch modes
is assumed to be equal to the emission rate in vacuum

γ

γ0
≈ 1� 3πc

2ω2P
jẼ�1��rA�j2: (7)

Together, Eqs. (5a), (5b) and (6) analytically predict the
spectral response for any driving frequency and atom location.
The prediction only requires the knowledge of the driving
electrical-field distribution, which is easily calculated for dielec-
tric or metallic structures with Bloch-mode solvers.

Fig. 2. Reflection spectra for an atom trapped in a sub-λ periodic
nanowire (inset) for three values of the group index, ng � 3, 10, and
80. Black dashed curves hold for low laser intensities, and red solid
curves for a laser intensity close to the saturation intensity of Cs atoms
(γ0 � 33 MHz). The calculation is performed for an on-axis atom
in the middle of the air gap, and for cx � 500 nm, cy � 100 nm,
cz � 220 nm, and a � 310 nm.
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Figure 3 provides an evaluation of the error introduced by
Eq. (7) as a function of the group index ng of the driving field
for an atom trapped in the middle of the air gap between two
Si3N4 boxes and matched in frequency. As expected, the error
weakens at large ng ’s. It comes from the fact that the decay into
all radiation modes is smaller than the decay in vacuum
�γrad < γ0� [8]; we have checked that the “exact” data displayed
with red circles can be perfectly reproduced by replacing 1 by
0.4 in Eq. (7). This evidences that accurate predictions can be
obtained with Eq. (7) and with an additional “exact” calculation
performed at a single frequency. Equation (7) offers a high de-
gree of simplicity. For illustration, we calculate the reflection at
zero detuning as a function of the atom position for ng � 40.
The results (see inset) are likely to be inaccurate for small re-
flectance, but their merit is to rapidly visualize atom positions
that offer large couplings.

Because they are directly expressed into the natural electro-
magnetic eigenstates of the waveguide, Bloch-mode scattering
matrices of single atoms are an important ingredient toward the
analysis of collective effects [7] resulting from the strong inter-
action between slow photons and a collection of dilute atoms.
Used at low excitation powers in conjunction with 2 × 2 Bloch-
mode scattering-matrix-product algorithms [10], Eq. (6) allows
the study of realistic waveguides, with lengths of a few hundred
period [10], terminated with arbitrary facet reflectivities [9], or
lossy due to absorption or to fabrication imperfections [10].
The additional flexibility brought by the analytical formula,
Eq. (7), allows fast computations that may help interpretations
when some physical parameters are tuned, such as the atom
positions that are not precisely known in experiments. As a final
remark, note that Eq. (6) is valid for atom–field interactions
that are mediated not only by propagative photons in the band,
but also for photons with energies within the gap, since the
normalization does not rely on energy considerations.
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