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We study the lifetime of an atom trapped in an optical vertical lattice in proximity of a massive surface
using a complex-scaling approach. We analyze how the presence of the surface modifies the known lifetimes
of Wannier-Stark states associated with Landau-Zener tunneling. We also investigate how the existence of a
hypothetical short-distance deviation from Newton’s gravitational law could affect these lifetimes. Our study is
relevant in order to discuss the feasibility of any atomic-interferometry experiment performed near a surface.
Finally, the difficulties encountered in applying the complex-scaling approach to the atom-surface Casimir-Polder
interaction are addressed.
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I. INTRODUCTION

The problem of atoms trapped in an accelerated periodic
lattice is an old one in solid-state physics [1–5]. However, some
phenomena like pseudoeigenstates (Wannier-Stark ladders)
and the lifetime limitations of those states (Landau-Zener
tunneling) are still a current subject of research both on the
experimental side and theoretically [6–13] (see also [5] and
references therein for a more extensive review). In this work,
we study the Landau-Zener effect [14–16] for atoms trapped
in a vertical standing wave in the presence of short-scale
interactions.

This is done in the context of the theoretical modeling
of the experiment “Force de Casimir et Gravitation à courte
distance” (FORCA-G) aiming at measuring the Casimir-
Polder force acting on a neutral atom in the presence of
a massive dielectric surface by atomic interferometry. At
the same time, the experiment is configured to search for
non-Newtonian deviations from the gravitational law at short
distances [17–23]. These two goals are reached by the use
of atoms trapped in a vertical optical standing wave in front
of a massive surface realizing the trap. Such a lattice allows
a precise knowledge of the distance between the atom and
the surface, this distance being a multiple of the wavelength
of the trap. The atomic states in such a trap were the main
subject of a previous paper [19]. In that paper the shape of the
wave functions and the modification of energy levels due to
the presence of the surface were deduced by solving a standard
eigenvalue problem. In this context, the states are supposed to
be bound states of the system, meaning that their lifetime is
infinite.

Nevertheless, solid-state physics teaches us that the states
in an accelerated periodic lattice are not bound states but
resonance states with a finite lifetime. The subject of this
paper is to quantify these lifetimes for the states calculated
in [19] in order to check the feasibility of the experiment,
knowing that the measurement of the interaction by atom
interferometry takes at most a few seconds. We want to
understand, in more detail, how the presence of the surface
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and of a hypothetical non-Newtonian gravitational potential
modifies the well-known finite lifetimes of standard Wannier-
Stark states.

This paper is organized as follows. In Sec. II, we describe
the system under scrutiny and the method we use to calculate
the lifetime of the atomic states. Section III is devoted to the
effect of the surface. This section is separated in two parts.
As a first step, we study the effect of a surface treated as a
boundary condition for an atom below it. In the following,
we investigate the phenomena arising when tunneling of the
atom through the surface is allowed. This is done for an atom
above the surface in order to clearly discriminate the effect
of the finiteness of the potential barrier from other resonance
effects. Then, Sec. IV shows the effect of a deviation from
Newton’s gravitational law at a short distance on the lifetimes
of the trapped atom, and Sec. V discusses the problem arising
when the Casimir-Polder interaction is taken into account. In
this part, the difficulties of the treatment of the Casimir-Polder
effect by the complex-scaling method are highlighted.

II. LIFETIMES OF ATOMS IN WANNIER-STARK STATES

Let us consider the Hamiltonian of an atom of mass ma

trapped in a periodic lattice V (z) = U
2 [1 − cos(2klz)] in the

presence of a linear gravitational potential

HWS = p2

2ma

+ U

2
[1 − cos(2klz)] − magz, (1)

where U is the depth of the trapping potential, kl represents
the wave vector of the trap, and g is the earth’s gravitational
constant. This operator is the sum of the well-known Bloch
Hamiltonian HB = p2

2ma
+ U

2 [1 − cos(2klz)] [1] and a linear
potential −magz (the z axis is oriented downwards). As a
consequence, the eigenstates of Eq. (1) are derived from the
Bloch states, generally taking into account one single Bloch
band. The spectrum obtained using this procedure can be
written as

Eα,n = ε̄α − nmag
λl

2
, (2)

where λl

2 is the periodicity of the lattice, with λl being its
wavelength, ε̄α is the mean value of the energy of the Bloch
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band α under consideration, and n is an integer labeling
the well where the state is centered. The states obtained
are known as Wannier-Stark states and were first discussed
for electrons in a crystal submitted to a constant electric
field [2]. The existence of such eigenstates results from
the single-band approximation. Nevertheless, a calculation
ignoring this approximation confirms the existence of these
states but associates a finite lifetime to each of them. This
lifetime physically corresponds to the so-called Landau-Zener
tunneling, namely, the possibility for a particle in a Wannier-
Stark lattice site to transit from one Bloch band to another
[14–16]. In other words, the discrete spectrum in Eq. (2) is
immersed in the continuum of eigenvalues of the Hamiltonian
(1) and can thus be seen as a resonance spectrum [24]. The
spectrum of Eq. (2) should thus be rewritten as [3–5]

Eα,n = ε̄α − nmag
λl

2
− i

�α

2
. (3)

The eigenstates associated with the spectrum (3) are metastable
states with a finite lifetime τ = h̄

�α
. In order to completely

characterize the states of an atom in our optical lattice, we need
to work out this complex spectrum to evaluate their lifetime in
the trap.

Several methods have been developed so far in order to
study this complex spectrum [25–30], each using approxima-
tions such as a periodic potential with a finite number of gaps
or a finite periodic lattice. Most of these methods are based on
the analogy of the Wannier-Stark sates with scattering states.
In this theoretical framework, the complex spectrum (3) can
be calculated as the set of poles of the scattering matrix of the
system. The method we will use in this work is based on
the rotation of the Hamiltonian (1) in the complex plane and
the derivation of the complex spectrum as eigenvalues of the
obtained non-Hermitian Hamiltonian. This approach is known
as complex-scaling method [3,31,32], and the rotation of the
Hamiltonian is performed via the operator C(θ ) such that

C(θ )ϕ(z) = ϕ(zeiθ ) ∀ ϕ ∈ C∞
0 . (4)

The one-dimensional complex-scaled Hamiltonian is then

H
(θ)
WS = e−2iθp2

2ma

+ U

2
[1 − cos(2klze

iθ )] − magzeiθ . (5)

According to the Balslev-Combes theorem [33], the complex
spectrum (3) can then be found by solving the eigenvalue
problem

H
(θ)
WS|φα,n〉 = Eα,n|φα,n〉, (6)

where the real part of a given eigenvalue represents its energy
level, while its imaginary part is the width of the resonance.

We stress here that resonance wave functions are character-
ized by a divergent behavior when z → ∞ as

φres(z → ∞) � e−ikz + S(k)eikz, (7)

with k being the wave vector of the atom and S(k) being
the scattering matrix of the system. As demonstrated in [3],
the divergent part of the resonant wave functions in Eq. (7)
is regularized by the complex scaling. This is not the case
for a nonresonant wave function of the continuum. As a
consequence, it is important to distinguish the resonant from
the nonresonant part of the complex spectrum worked out

FIG. 1. (Color online) Schematic representation of the complex
eigenvalues of the complex-coordinate scaled Hamiltonian H (θ)

according to the Balslev-Combes theorem [33].

solving Eq. (6). A schematic representation of the eigenvalues
of Hamiltonian (5) is shown in Fig. 1. We see in Fig. 1 that
the continuum eigenvalues lie on a line forming an angle
2θ with the real axis, with θ being the angle chosen for the
transformation (4). At the same time the real bound states are
located on the real axis (corresponding to the fact that they have
an infinite lifetime), while the resonance states are the complex
eigenvalues which are not part of the rotated continuum. In
the case of the Wannier-Stark Hamiltonian, the presence of
energy bands due to the periodicity of the trap leads to a
peculiar structure of the complex eigenvalues. The eigenvalues
of the Hamiltonian (5) are shown in Fig. 2. These eigen-
values are obtained using the pseudoperiodicity of the trap.
Indeed, the fact that we calculate states in an infinite pseudope-
riodic lattice allows us to restrict the search of the spectrum
in Eq. (3) to the analysis of the spectral properties of the
Floquet-Bloch operator [5]

U = e− i
h̄
HWSTB , TB = 2h̄

magλl

, (8)

over a Bloch period [4,5]. The eigenvalues are then worked out
using a discrete variable representation (DVR) method and a
QR algorithm for complex symmetric matrices [34].

FIG. 2. Complex eigenvalues for the first three Bloch bands of
the Hamiltonian H

(θ)
WS. The energies are expressed in units of Er =

h̄2k2
l

2ma
, which is the natural unit for energy levels in a trap with wave

vector kl (in the case of FORCA-G, Er � 5.37 × 10−30 J and � =
1Er corresponds to τ = h̄/� = 1.96 × 10−5 s). The spectrum here
is calculated for U = 3Er .

013411-2



LIFETIMES OF ATOMS TRAPPED IN AN OPTICAL . . . PHYSICAL REVIEW A 88, 013411 (2013)

TABLE I. Table of the real parts Re(E1,n) of the complex
energies (3) compared with the Wannier-Stark spectrum E1,n obtained
numerically without complex scaling and with the energies En

resulting from a semianalytical calculation in the first Bloch band.

The energies are given in units of Er = h̄2k2
l

2ma
, which is the natural

unit for energy levels in a trap with a wave vector kl . The numerical
example corresponds to U = 3Er .

n Re(E1,n) E1,n En

−5 1.78711 1.78711 1.78718
−4 1.71703 1.71703 1.71711
−3 1.64696 1.64696 1.64704
−2 1.57688 1.57688 1.57697
−1 1.50681 1.50681 1.50690
0 1.43674 1.43674 1.43683
1 1.36667 1.36667 1.36677
2 1.29660 1.29660 1.29670
3 1.22652 1.22652 1.22663
4 1.15645 1.15645 1.15656
5 1.08638 1.08638 1.08649

In order to check the validity of our method, we compare
the real parts of the calculated eigenvalues with the spectrum
obtained using two different methods. The first is the tight-
binding model [5,17], a standard semianalytical resolution
of the Schrödinger equation for HWS, which does not give
access to the finite lifetime of the states. The second one is a
finite-difference numerical approach to HWS without complex
scaling. Table I shows good agreement between the real parts
of eigenvalues (3) and the second approach. The difference
between our results and the tight-binding model can be traced
back to the fact that this approach restricts the Hilbert space to
the first Bloch band.

Concerning the imaginary parts, representing the lifetime
of the band under scrutiny, Niu et al. have proposed a
general formula to evaluate the inverse lifetime of the standard
Wannier-Stark states [35]. This formula gives an estimate of
the tunneling rate γ as a function of a critical acceleration αc

and the dimensionless acceleration α due to the linear potential.

γ = αe−αc/α. (9)

In our case, α = m2
ag

h̄2k3
l

and the critical acceleration can be

expressed as

αc = π�2

K
, (10)

where � is the half width of the energy gap between the first
and the second Bloch bands and K = n

2 is the wave number
of Bragg scattering corresponding to the nth gap (here we will
take n = 1). With this expression, we obtain, for the second
Bloch band, a tunneling rate of the order of 0.003Er , which
is of the same order of magnitude as the value of the complex
part of the spectrum (3), as can be seen in Fig. 2. An additional
verification with other values of the well depth assures us that
the complex-scaling method provides satisfying results for this
physical system. As a consequence, in the next section, we will
use this method to analyze the lifetimes of the Wannier-Stark
states in the presence of a surface, whose main features have
been already discussed in [19].

III. LIFETIMES IN THE PRESENCE OF THE SURFACE

A. Presence of the surface

In our problem, we consider the presence of a surface at
z = 0. Our atom is thus located below the surface, in the region
z > 0 (we recall that the z axis is oriented downwards). The
presence of this boundary condition breaks the quasiperiodic-
ity of the system. The potential modifying the optical trap is no
longer linear since it must be considered the gravitational linear
potential for z > 0 and an infinite potential barrier for z � 0,
describing the impossibility of the particle to penetrate the
mirror. We have shown in a previous paper [19] that this surface
induces a modification of the energies and states of the Hamil-
tonian HWS. We now want to verify that this modification does
not reduce drastically the lifetimes of our atoms in the trap.

As anticipated before, the presence of a boundary condition
in z = 0 breaks the translational symmetry of the problem.
Thus we can no longer use the quasiperiodic approximation,
and we have to solve directly the eigenvalues problem (6). This
is done using a finite-element method and once again a QR
algorithm for symmetric complex matrices using the subrou-
tine ZGEEV of the numerical package LAPACK [36]. However,
using this method, numerical problems arise when the well
depth is larger than U = 2.2Er since in this case the imaginary
parts of the complex eigenvalues are too small. As a matter of
fact, the lifetime of a given Wannier-Stark well is a strongly
increasing function of the well depth. This dependence can
be well understood using the image of tunneling. Indeed,
the finite lifetime of the metastable states can be seen as a
consequence of the possibility for an atom in a lattice site n

to tunnel through the potential toward an upper Bloch band
in another site. This is favored by the linear potential which
induces resonant tunneling between the first band in a given
site to, e.g., the second band in a farther site. As a consequence
the atom reaches a new state with a new energy, destroying
the former one. Moreover, the atom can reach a state with an
energy higher than the trap depth, thus no longer being trapped.
So the tunneling probability depends on the lattice depth: the
deeper the trap is, the weaker this probability becomes.

This feature is illustrated in Fig. 3, where lifetimes are
calculated for different well depths. Here we have taken into
account only the lifetime of the first Bloch band. Indeed, as can
be seen in Fig. 2, the lifetime of the first band is the longest
one, and the larger the band under scrutiny is, the shorter
this lifetime is. In the particular case of our experimental
parameters, the second Bloch band has a mean energy of
ε̄2 � 5.45 Er and is then not trapped by a well depth U = 3Er .
As a consequence, only the lifetime of the first band is of
interest to us.

The analysis of Fig. 3 shows, moreover, that for any well
depth, the first-band lifetimes are a function of the considered
well. In particular, the lifetimes do not vary remarkably starting
approximately five wells away from the surface, while being
functions of the considered well in proximity of the boundary
z = 0. In order to verify the coherence of the calculation the
constant lifetimes far from the surface (function of the well
depth) can be compared to the ones obtained through the
Landau-Zener formula, derived for the standard Wannier-Stark
states (i.e., in an infinite lattice). This comparison is shown in
Fig. 4. In Fig. 4, we can see that the Landau-Zener formula
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FIG. 3. (Color online) Lifetimes of the first Bloch band as a
function of the quantum number n labeling the well of the trap for
five different depths. From top to bottom we have U = 2Er (blue
dots), U = 1.5Er (green dots), U = 1Er (orange dots), U = 0.5Er

(red dots), and U = 0.1Er (black dots).

still gives a good description far from the surface. We observe
typical oscillations of lifetimes around the Landau-Zener
results, which have already been discussed theoretically in [5]
and observed experimentally in [8]. These oscillations result
from resonant tunneling occurring for specific values of U

between the most stable band and excited ones (for a detailed
discussion see [5]). This suggests that the lifetimes of our
metastable states in the presence of a surface are of the order
of 1014 s for a well depth of U = 3Er . However, in this analysis
we have treated the mirror as an infinite barrier at z = 0, which
is not very realistic. It is of interest to investigate how the
results are modified if the mirror is modeled by means of a
finite potential barrier. This will be done assuming that the
atom is located above the mirror.

B. Atom above the mirror

A way to increase the lifetime of the states is to place the
atom above the surface rather than below it. In this case, if we
consider as before the mirror as an infinite barrier, the potential
is a well of infinite height. As a consequence, it supports only
a discrete set of real eigenstates having an infinite lifetime.

FIG. 4. (Color online) Lifetime of the first Bloch band calculated
with the complex scaling method (red dots) as a function of the trap
depth. The calculated lifetimes are compared with the Landau-Zener
formula (black line) for standard Wannier-Stark sates.

FIG. 5. Shape of the potential for atoms above a finite surface.

In order to model the surface more precisely, we allow the
tunneling of the atom into this surface. Therefore we replace
the infinite barrier by a finite one as shown in Fig. 5. As a
consequence, the complex-scaled Hamiltonian of the system
can be expressed as

H
(θ)
above = e−2iθp2

2ma

+ V0 if z � 0,

H
(θ)
above = e−2iθp2

2ma

+ U

2
[1 − cos(2klze

iθ )]

+magzeiθ elsewhere, (11)

where V0 ∈ R. In order to study the behavior of the atoms in
front of a surface with a finite size, we investigate the complex
spectrum for a given well depth (U = 1Er in the numerical
example) as a function of the height of the barrier chosen to
represent the surface. More specifically, we focus our attention
on the transition from bound states to resonances for atoms in
front of a potential barrier with a varying height.

The resulting complex eigenvalues for different heights of
the barrier are shown in Fig. 6. In Fig. 6, we see that the
presence of the barrier induces the emergence of a continuum
associated with the standard resonances spectrum. The posi-
tion of this continuum depends on the height of the barrier:
more precisely, the continuum region of the spectrum always
starts at a value around V0. When the barrier is very low (i.e.,
of the order of the depth of the periodic trap or below), we ob-
serve that the lifetime of the atom close to this barrier is shorter
than the lifetime at longer distances. This can be understood
thanks to the interpretation of Landau and Zener of the reso-
nance phenomenon. Indeed, if we consider that the finite life-
time of the atom arises from the resonant tunneling through the
trap, it is clear that this tunneling has a higher probability when
the atom is close to the barrier because it is not trapped on the
left side. In addition, we observe that when the barrier becomes
higher than the well depth, some bound states appear that
correspond to the closest states submitted to a potential well.

As expected, the effect of a finite barrier representing the
surface is completely negligible for the wells far from
the surface and starts to be visible for the closest wells when
the barrier height is of the order of the well depth or below. This
means that the penetrability of the surface should be compa-
rable to that of the periodic trap in order to allow a significant
modification of the behavior of the complex spectrum. This is
reasonably not at all the case for a solid mirror, and we can
conclude that the finiteness of the surface should not play a
major role in the lifetime of our states in the trap.

013411-4



LIFETIMES OF ATOMS TRAPPED IN AN OPTICAL . . . PHYSICAL REVIEW A 88, 013411 (2013)

1 0 1 2 3 4 5 60.005

0.004

0.003

0.002

0.001

0.000

0.001

Ε1,n

1,
n

un
its

 o
f E

r

un
its

 o
f E

r
un

its
 o

f E
r

un
its

 o
f E

r

units of Er units of Er

units of Erunits of Er
1 0 1 2 3 4 5 60.005

0.004

0.003

0.002

0.001

0.000

0.001

Ε1,n

1,
n

1 0 1 2 3 4 5 60.005

0.004

0.003

0.002

0.001

0.000

0.001

Ε1,n

1,
n

1 0 1 2 3 4 5 60.005

0.004

0.003

0.002

0.001

0.000

0.001

Ε1,n

1,
n

FIG. 6. (Color online) Complex spectrum of the Hamiltonian (11) describing an atom in front of a potential barrier with different heights
(from left to right and top to bottom V0 = 0.1Er , V0 = 1Er , V0 = 2Er , and V0 = 5Er ; black dots) compared with the standard Wannier-Stark
lifetimes (blue lower horizontal line). The depth of the periodic trap is chosen to be U = Er . The solid red line represents the line of the
continuum with a slope of 2θ , and the green upper horizontal line highlights the eigenvalues with an imaginary part equal to 0.

IV. NON-NEWTONIAN GRAVITATION

After observing that the presence of the surface does not
reduce drastically the lifetime of our modified Wannier-Stark
states, we have to verify that this is not the case even in
the presence of a Yukawa gravitational potential. Indeed, the
main goal of the experiment FORCA-G is to search for a
hypothetical deviation from Newton’s law at short distance
predicted by some unification theories. We have then to
estimate the modification of the lifetimes of the states in
the presence of such a deviation, which can be written as
an additional potential of the form [19]

UY = 2παYGρsmaλ
2
Ye−2z/λY , (12)

where G = 6.67 × 10−11 m3 kg−1 s−2 is the universal grav-
itational constant and ρs is the density of our surface (for
which we have chosen the density of silicon ρs = 2.33 ×
103 kg m−3). We want to stress here that the Yukawa potential
presented in Eq. (12) depends on two parameters, αY and λY.
These parameters represent respectively the coupling strength
of the non-Newtonian deviation and its typical range. The aim
of experiments devoted to non-Newtonian gravitation is to
impose constraints on the value of these two parameters. The
present constraints and the ones predicted for the experiment
FORCA-G are shown in Fig. 7.

In order to analyze the modification to the lifetimes induced
by a hypothetical Yukawa term, we have to calculate the
spectrum of the Hamiltonian

H = HWS + UY

= p2

2ma

+ U

2
[1 − cos(2klz)] − magz

+ 2παYGρsmaλ
2
Ye−2z/λY . (13)

As done previously, we apply the transformation (4) to this
Hamiltonian, obtaining the non-Hermitian Hamiltonian

H (θ) = e−2iθp2

2ma

+ U

2
[1 − cos(2klze

iθ )]

−magzeiθ + 2παYGρsmaλ
2
Ye−2zeiθ /λY . (14)

The complex spectrum resulting from this modified Hamil-
tonian is presented in Fig. 8, which shows that even if
the presence of a deviation from Newton’s gravitation law

FIG. 7. (Color online) Present constraints (yellow region) and
predicted constraints [colored (gray) lines] for the FORCA-G
experiment for the Yukawa potential in the (αY,λY) plane. The colored
(shaded) zones are excluded. This figure is taken from [19] and
adapted from [37].
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FIG. 8. (Color online) Values of the complex spectrum in the
presence of a Yukawa potential (red dots) compared with the modified
Wannier-Stark complex spectrum (black crosses). We have chosen
U = 2Er , αY = 1011, and λY = 1 μm.

modifies the lifetimes of the atom in the trap, particularly for
the closest wells, this lifetime remains very large compared
with the duration of the experiment. Indeed, for practical rea-
sons due to the coherence of the cold atoms in the experimental
setup, the duration of the measurement in FORCA-G will not
exceed 1 s. As a consequence, the Landau-Zener effect is not a
limitation for the measurement of a deviation from Newton’s
law in our experiment. This can be more accurately verified
from the analysis in Table II, which confirms that the lifetimes
of an atom in the trap are much longer than the duration of the
measurement estimated in [22].

TABLE II. The first ten imaginary parts of the complex energy in
the first well as a function of the values of αY and λY calculated in [19].
The notation a[b] in the second column corresponds to a × 10b.

λY Im(E(Y)
1,1 ) τ (Y)

(μm) αY (units of 10−10Er ) (1010 s)

Far regime
0.70000 1.95007[12] −6.25618 6.13778
0.80835 2.08378[11] −8.09505 7.94185
0.93347 2.87073[10] −8.44136 8.28161
1.07795 4.92177[9] −8.51022 8.34916
1.24480 1.02282[9] −8.52701 8.36564
1.43747 2.51801[8] −8.53137 8.36991
1.65996 7.15759[7] −8.53326 8.37177
1.91689 2.30712[7] −8.53361 8.37211
2.21359 8.33762[6] −8.53419 8.37268
2.55622 3.31836[6] −8.53403 8.37252

Near regime
0.10000 9.98047[11] −8.55444 8.39255
0.11659 9.98047[11] −8.55682 8.39488
0.13594 9.98047[11] −8.55945 8.39746
0.15849 9.98047[11] −8.56119 8.39917
0.18479 9.98047[11] −8.56046 8.39845
0.21544 9.98047[11] −8.55548 8.39357
0.25119 9.98047[11] −8.54216 8.38050
0.29286 9.98047[11] −8.51542 8.35427
0.34146 1.41907[10] −8.53314 8.37165
0.39811 2.60450[9] −8.53385 8.37235

V. DISCUSSION

As we have seen in the previous sections, the presence
of a material surface and the assumptions of a deviation
from the short-range gravitational law do not considerably
limit the lifetimes of the metastable states of the trap. As
a consequence, the assumption consisting of considering
these states as pseudoeigenstates remains valid under these
assumptions. However, up to now, we have not taken into
account the effect of the Casimir-Polder interaction between
the quantized electromagnetic field in the presence of the
surface and the atom. As we have seen in [19], this effect is
dominant at short distances, inducing an important correction
to the real energy levels of the atomic states. So we can suspect
that it could have a non-negligible effect on the imaginary part
of the spectrum as well.

As shown in [19], the Casimir-Polder atom-surface in-
teraction can be computed using second-order perturbation
theory on the Hamiltonian interaction term. Using the same
notation as [19], the Hamiltonian describing our system can
be expressed as

H = H0 + Hint = Hf + Hat + HWS + Hint,

Hf =
∑

p

∫ +∞

0
dkz

∫
d2k h̄ω a†

p(k,kz)ap(k,kz),

Hat = h̄ω0|e〉〈e|, (15)

HWS = p2

2ma

− magz + U

2
[1 − cos(2klz)],

Hint = −μ · E(r).

The complete Hamiltonian is written as a sum of a term H0

describing the free evolution of the atomic and field degrees of
freedom. In particular, Hf is the Hamiltonian of the quantum
electromagnetic field, described by a set of modes (p,k,kz):
here p is the polarization index, taking the values p = 1,2,
corresponding to TE and TM polarization, respectively, while
k and kz are the transverse and longitudinal components of the
wave vector. Hat is the internal Hamiltonian of our two-level
atom having ground state |g〉 and excited state |e〉 separated
by a transition frequency ω0. While Hat is associated with the
internal atomic degrees of freedom, the term HWS accounts
for the external atomic dynamics. The interaction between the
atom and the quantum electromagnetic field is written here in
the well-known multipolar coupling in dipole approximation
[38], where μ = qρ (with q being the electron’s charge and ρ

being the internal atomic coordinate) is the quantum operator
associated with the atomic electric dipole moment and the
electric field is calculated in the atomic position r.

In order to compute the correction to the complex energy
spectrum due to the Casimir-Polder effect, we have used a
non-Hermitian equivalent of the complex perturbation theory
based on a redefinition of the scalar product, which will be
called the c-product, defined by [39]

(ϕ|ψ) =
∫ +∞

−∞
dx ϕ(x)ψ(x). (16)
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Using this definition, we can define the correction term in the
same way as in standard quantum mechanics and obtain the
expression of the second-order energy correction,

�E(2)
n =

∑
k 	=n

[(
ψ

(0)
k

∣∣Wθ
∣∣ψ (0)

n

)]2

E
(0)
n − E

(0)
k

, (17)

for a complex-scaled Hamiltonian of the form

Hθ = Hθ
0 + Wθ, (18)

where Hθ
0 is the non-Hermitian unperturbed Hamiltonian and

Wθ is a small perturbation. We recall here that the first-order
correction in the case of the dipolar approximation for the
atom-field interaction is null due to the nature of the atomic
dipolar operator μ. After having scaled the Hamiltonian (15),
we are now prepared to calculate the complex correction
knowing that the unperturbed states can be written as∣∣ψ (0)

n,1

) = |g〉|0ε(k,kz)〉|n,1), (19)

where n stands for the number of the well where the atom
is initially placed (in the first Bloch band). We have to stress
here that this state belongs to a product of three spaces and
that the transformation (4) acts only on the external atomic
states. As a consequence, we will use the c-product only on
the external atomic states, whereas we keep the standard scalar
product acting on the internal atomic states and field states.
These assumptions lead to an expression for the second-order

correction of the modified Wannier-Stark energy levels,

�E
(2)
m,1 = −

∑
p

∫ +∞

0
dkz

×
∫

d2k
+∞∑
n=1

+∞∑
b=1

∣∣(ψ (0)
m,1|Hθ

int|e〉|1p(k,kz)〉|n,b)
∣∣2

E
(0)
n,b − E

(0)
m,1 + h̄(ω + ω0)

,

(20)

where

Hθ
int = −μ · E(reiθ ). (21)

Equation (20) can be simplified considering that in a shallow
trap, as in the case of FORCA-G, the Bloch bands above the
second one are not trapped in the lattice, so that the wave
functions associated with these bands are very delocalized and
the overlap with the states of the first band is very weak. This
observation allows us to restrict the sum over b to its first two
terms. Moreover, due to the extension of the modified Wannier-
Stark wave functions in the first band, it is sufficient to take into
account only 20 terms in the sum over n. Finally, the weakness
of the imaginary part of the modified Wannier-Stark states as
well as those of the difference of the real part of the Wannier-
Stark spectrum with respect to the term h̄(ω + ω0) allows us
to ignore the contribution E

(0)
n,b − E

(0)
m,1 in the denominator in

Eq. (20). All these simplifications lead to a new expression of
the correction,

�E
(2)
m,1 =

∫ ∞

0
dz

∫ ∞

0
dz′

m+10∑
n=m−10

{
−

∑
p

∫ +∞

0
dkz

∫
d2k

[(
(m,1|z)(z|n,1)(m,1|z′)(z′|n,1)

h̄(ω + ω0)

+ (m,1|z)(z|n,2)(m,1|z′)(z′|n,2)

h̄(ω + ω0)

)
A(θ)

p (k,kz,r)A(θ)†
p (k,kz,r′)

]}

= −
∫ ∞

0
dz

∫ ∞

0
dz′ ∑

p

∫ +∞

0
dkz

×
∫

d2k
m+10∑

n=m−10

{
WSm,1(z)WSm,1(z′)

h̄(ω + ω0)
A(θ)

p (k,kz,r)A(θ)†
p (k,kz,r′)[WSn,1(z)WSn,1(z′) + WSn,2(z)WSn,2(z′)]

}
, (22)

where WSn,m(x) is the state for the modified Wannier-Stark states taking into account the presence of the surface and

A(θ)
p (k,kz,r) = −〈0p(k,kz)|〈g|μ · E(reiθ )|e〉|1p(k,kz)〉 = − i

π

√
h̄ω

4πε0
eik·ρeiθ

μeg · fp(k,kz,ze
iθ ), (23)

where fp(k,kz,z) are the mode functions of the electric field in the presence of a perfectly conducting mirror in z = 0 [40],

f1(k,kz,z) = k̂ × ẑ sin(kzz), f2(k,kz,z) = k̂
ickz

ω
sin(kzz) − ẑ

ck

ω
cos(kzz), (24)

with k̂ = k/k and ẑ = (0,0,1). Unfortunately, the terms A(θ)
p (k,kz,r) and A

(θ)†
p (k,kz,r′) lead to a divergent integral when the

coordinate z is complex scaled. Indeed, using the definitions of the electric field given in [19], we obtain the following divergent
expression for the correction:

�E
(2)
m,1 = − h̄μ2

eg

4π3ε0

∫ ∞

0
dz

∫ ∞

0
dz′

∫ +∞

0
dkz

∫
d2k

m+10∑
n=m−10

(
Wm,1(z)Wm,1(z′)

h̄(ω + ω0)
[Wn,1(z)Wn,1(z′) + Wn,2(z)Wn,2(z′)]

×ω

{[
1 +

(
ckz

ω

)2
]

sin(kzze
iθ ) sin(kzz

′eiθ ) +
(

ck

ω

)2

cos(kzze
iθ ) cos(kzz

′eiθ )

})
. (25)
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This divergence is fundamental because the terms in cosh
and sinh (coming from the sin and cos functions with complex
arguments) produce a divergence which is not sensitive to
any ordinary regularization technique. This could be due to
the fact that the atom is treated all along the calculation as
a pointlike particle, whereas its finite size should be taken
into account. However, this effect is difficult to characterize
because the scaling of the Hamiltonian makes the coordinate
representing the atom-wall distance complex so that the atomic
size should be defined as a complex quantity, which is far from
natural. So, for the time being, the calculation of the effect of
the Casimir-Polder interaction on the lifetimes of the atomic
states remains an open problem.

VI. CONCLUSIONS

In this paper we have studied the modifications to the
lifetime of atoms trapped in an optical lattice in proximity
of a surface. We have shown that the boundary condition
introduced by the presence of the surface only marginally
modifies the value of the ordinary Wannier-Stark lifetimes,
leaving them almost infinite with respect to the duration of
a measurement in a typical atomic-interferometry experiment
such as the recently proposed FORCA-G. The same holds
for the presence of a hypothetical Yukawa deviation from
Newton’s gravitational law. In our analysis, we have mod-
eled the surface as both an infinite and a finite potential
barrier and considered an atom both above and below the
surface.

As a natural development of our work, it could be interesting
to investigate the behavior of the states in front of a more
realistic surface, abandoning the assumptions of perfect con-
duction and infinite extension. This is the subject of ongoing

work and will be part of a future presentation. As discussed
in the last section, another problem which remains open is
the precise calculation of the perturbation of the lifetimes
due to the Casimir-Polder effect. However, we expect that
this will not significantly reduce the lifetime. On the contrary,
the Casimir-Polder force is attractive, so for atoms below the
surface it will tend to counteract Landau-Zener tunneling,
thus increasing the lifetime, rather than decreasing it. This
assumption is made knowing that the Casimir-Polder potential
is attractive toward the surface, whereas the Landau-Zener
effect tends to drag the atom away from the surface. Thus
at the moment we can assume that the Casimir-Polder effect
should act on the lifetimes in an opposite way with respect
to the Landau-Zener effect, so it should increase the lifetime
of the atomic states. Finally, we point out that in this work
we have not taken into account chemical processes between
the atoms and the surface (atoms “sticking” to the surface)
as we have considered the surface to be a simple potential
barrier. A more realistic analysis should include an additional
potential describing that interaction but is beyond the scope of
the present paper.
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