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We study the localization of collective pair excitations in weakly-interacting Bose superfluids in
one-dimensional quasiperiodic lattices. The localization diagram is first determined numerically.
For intermediate interaction and quasiperiodic amplitude we find a sharp localization transition,
with extended low-energy states and localized high-energy states. We then develop an analytical
treatment, which allows us to quantitatively map the localization transition into that of an effective
multiharmonic quasiperiodic system.

PACS numbers: 03.75.-b, 05.30.Jp, 05.70.Ln,

Quasiperdiodic systems, which are formed of a small
number of incommensurate sinusoidal components, con-
stitute an appealing intermediate between disordered and
periodic systems. Such structures are basic models for
a wide variety of physical systems. They appear nat-
urally in the growth of certain crystals [1] or as a re-
sult of charge-density waves [2]. They also describe two-
dimensional lattice electrons in perpendicular magnetic
fields [3]. Moreover, they can be created on purpose
in solid crystals [4], photonic crystals [5], and ultracold-
atom optical lattices [6–8]. In quasiperiodic systems, the
lack of translation invariance can induce localization of
linear waves, similarly as the phenomenon of Anderson
localization in disordered systems [9]. In quasiperiodic
systems, however, the quasi-repetition of finite patterns
radically changes the localization picture. For instance,
in a one-dimensional disordered system, any quantum
particle is localized with an energy-dependent localiza-
tion length [10, 11]. In contrast, for a quasiperiodic sys-
tem made of a single incommensurate sinusoidal modu-
lation of a main periodic lattice, there is a localization
transition for some critical strength of the quasiperiodic
component beyond which the states are localized with a
localization length that is independent of the energy [12].
The extension of the concept of localization to inter-

acting quantum systems is attracting a considerable at-
tention as regards phase diagrams [13], many-body lo-
calization transitions [14], and localization of collective
excitations [15–17]. These issues have been first investi-
gated for purely disordered systems and extensions to
quasiperiodic systems are just starting. So far, most
studies focused on the phase diagram of one-dimensional
bosons in quasiperiodic lattices at zero temperature [18–
20], finite temperature [21], and infinite temperature [22].
Conversely, the localization of collective excitations re-
mains largely open. This issue is particularly impor-
tant because the transport of collective excitations gov-
erns many dynamical effects in correlated quantum sys-
tems [23], for instance the propagation of correlations in
recently-developed quench experiments [24].

Here we study the localization of collective pair exci-
tations in weakly interacting Bose superfluids subjected

to a one-dimensional quasiperiodic lattice. We first de-
termine the localization diagram numerically and show
that, for intermediate interaction and quasiperiodic am-
plitude, there is a sharp localization transition. This
nontrivial transition separates bands of states that are
extended at low energy and localized at high energy. We
then develop an analytical treatment, which allows us to
reproduce the numerical results accurately and to quanti-
tatively map the localization transition into that of an ef-
fective multiharmonic quasiperiodic system. Finally, we
discuss experimental observability and possible extension
of our results.
The starting point of our study is the Aubry-André-

Hubbard Hamiltonian,

Ĥ = −
∑

j,l

Tj,lâ
†
j âl +

∑

j

Vj â
†
j âj +

U

2

∑

j

â†j â
†
j âj âj , (1)

which governs the low-energy physics of interacting
bosons in one-dimensional (1D) quasiperiodic lattices.

In Eq. (1), âj and â†j are the bosonic annihilation and
creation operators at the lattice site j. The first term
represents quantum tunneling with the hopping matrix
T̂ , which includes nearest-neighbor tunneling, Tj,j±1 = t
and Tj,l = 0 for |j − l| > 1, as well as the homogeneous
on-site term Tj,j = −2t, for convenience. Within this

convention, the free-particle spectrum, εk = 4t sin2(k/2),
is centered on ε = 2t with the band edges ε = 0 and
ε = 4t. The second term represents the on-site quasiperi-
odic potential modulation, Vj = ∆cos(2πrj + ϕ), where
ϕ is a phase, ∆ is the quasiperiodic amplitude, and r is
an irrational number. The third term represents on-site
repulsive interactions with the interaction energy U > 0.
In the weakly interacting regime with high occupation

number per lattice site (n ≫ U/t, with n the mean den-
sity), we can rely on mean field theory [25]. A similar ap-
proach has been presented elsewhere for disordered sys-
tems in continuous [17, 26, 27] or lattice [28] spaces, and
we just outline it here. The density background nj is first
determined by minimizing the classical energy functional,
obtained by replacing the operator âj by the real-valued
field φj ≡ √

nj in Eq. (1). It yields the Gross-Pitaevskii
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equation (GPE),

µφj = −T̂ φj + Vjφj + Uφ3
j , (2)

where the term T̂ φj is a shortcut for the hopping ma-
trix contribution t(φj+1 − 2φj + φj−1) and µ is the
chemical potential. The collective pair excitations of
the Bose superfluid, which are represented by two fields
uj and vj , are then found by expanding Hamilto-
nian (1) up to second order in the Bogoliubov operator

δn̂j/2
√
nj + i

√
njδθ̂j , where δn̂j and δθ̂j are the density

and phase fluctuation operators, and diagonalizing the
resulting quadratic Hamiltonian. The excitation energy
E and wave functions uj and vj are the solutions of the
Bogoliubov-de Gennes equations (BdGEs)

[

−T̂+Vj−µ+2Unj Unj

−Unj T̂−Vj+µ−2Unj

][

uj

vj

]

=E

[

uj

vj

]

. (3)

Equations (2) and (3) form the complete set to deter-
mine the elementary excitations of the Bose fluid in the
quasiperiodic lattice.
We first solve Eqs. (2) and (3) numerically in the 1D

quasiperiodic lattice. The number of lattice sites is cho-
sen to be a Fibonacci number Fp and r is taken as the
ratio Fp−1/Fp. It allows us to use periodic boundary
conditions and a good approximation of an incommensu-
rate ratio (

√
5− 1)/2 [12]. In practice, we use Fp = 610,

which yields r = (
√
5 − 1)/2 ± 0.000002 [29]. The den-

sity background is computed by solving the GPE us-
ing imaginary-time propagation with a Crank-Nicolson
scheme [30]. The good numerical convergence of the
imaginary-time propagation of the GPE is a delicate
point for the subsequent determination of the collective
excitations using Eq. (3). The convergence criterion ap-
plies to the effective, imaginary-time-dependent chemi-

cal potential µ(τ) ≡ −~

2
d
dτ ln

(

∑

j nj

)

. We have checked

that the density profile is unaffected when the precision
threshold varies from 10−8 to 10−15. The same holds
when the imaginary time step ∆τ used in the propaga-
tion varies from 0.01/t to 0.5/t. Moreover, the density
profile precisely agrees with the perturbative expansion
of the GPE solution implemented up to order 50 [31]. All
together, the precision on the density profile nj is of the
order of 10−8 for all results presented here. The excita-
tions are then computed by exact diagonalization of the
matrix in Eq. (3) using the Lanczos algorithm for sparse
non-Hermitian eigenproblems [30].
The numerical results are summarized on the diagram

in Fig. 1(a). It displays three different regimes. For weak
quasiperiodic amplitude ∆ and strong interaction U , the
density background is fully connected and all excitations
are extended (‘extended regime’). For a given interac-
tion strength U and tunneling t, the density modulations
increase with the quasiperiodic amplitude ∆. Above a
critical value of ∆

c
, the density profile gets fragmented

(‘fragmented regime’), which yields the upper boundary
on the diagram. The fragmentation condition is chosen

Figure 1. (Color online) Numerical results. (a) Local-
ization diagram as a function of the interaction strength
and the quasiperiodic amplitude. It displays three regimes:
(i) ‘extended regime’ where the density background is con-
nected and all excitations are extended; (ii) ‘fragmented
regime’ where the density background is fragmented; and
(iii) ‘extended-localized regime’ where the density back-
ground is connected and the excitation spectrum shows a
delocalization-localization transition with exponentially local-
ized high-energy states and extended low-energy states. (b)-
(c) Typical excitation wave function u in the localized (b)
and extended (c) regimes, plotted in semilogarithmic scale
and for the 150 first lattice sites (similar plots are found for
the v wave functions). The two panels correspond to two ex-
citations with consecutive energies above (b) and below (c)
the mobility edge for Un/t = 1.75 and ∆/t = 3.3.

.

to be the minimal value of ∆ such that at least one lat-
tice site has a density lower than 0.01 atom per site. We
have checked that varying this arbitrary threshold down
to 0.001 yields insignificant changes of the fragmenta-
tion boundary. Moreover the latter is in good agreement
with the experimental observation of Ref. [7]. In the frag-
mented regime, the density profile is cut in disconnected
pieces. It corresponds to trivial localization, a case that
we disregard in the following. Notice that in the limit
U → 0, we recover the critical value ∆

c
= 2t, which is

the localization transition of the noninteracting Aubry-
André model. The most interesting regime appears for
intermediate quasiperiodic amplitude (‘ext-loc regime’).
In this regime, although the density background is fully
connected, we find a localization transition of the collec-
tive excitations. Remarkably enough, they are the high-
energy excitations that are exponentially localized over a
few lattice sites [see Fig. 1(b)] while the low-energy exci-
tations are extended over the whole system [see Fig. 1(c)].
This transition is sharp as exemplified in Figs. 1(b) and
(c), which correspond to two excitations of consecutive
energies for Un = 1.75t and ∆ = 3.3t.

In order to characterize the localization transition,
we compute two Lyapunov exponents for the excita-
tions, which correspond to the two Bogoliubov wave
functions, γu(E) ≡ − limj→∞ ln |uj|/j and γv(E) ≡
− limj→∞ ln |vj |/j. They are extracted from fits in the
tails of the logarithm of the wave functions u and v. Fig-
ure 2(a) displays those Lyapunov exponents versus the
excitation energy E, for fixed interaction and disorder
strengths. The Lyapunov exponents γu and γv are indis-
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Figure 2. (Color online) (a) Lyapunov exponents of the
Bogoliubov wave functions u and v, for Un/t = 1.75 and
∆/t = 3.3, 3.5, 3.7. The excitation spectrum is banded and
displays a sharp localization transition separating extended
(γ = 0) and localized (γ > 0) states. (b) Mobility edge as
a function of the quasiperiodic amplitude ∆/t as extracted
from power-law fits to the numerical γ(E) curves [solid lines
on panel (a)]. Error-like bars correspond to the edges of the
minigap containing the mobility edge. The dotted, red line
shows the analytical prediction of the locator theory applied
to the effective model (8) with the potential (11).

tinguishable and hereafter we omit the wave function in-
dex u or v. In the ‘ext-loc’ regime the Lyapunov exponent
curves clearly show the transition, separating extended
(γ = 0) and localized (γ > 0) states [32]. The excitation
spectrum splits in several bands separated by minigaps,
a general feature in quasiperiodic systems [12, 33–36].
The transition generally lies in one of the minigaps. To
determine the mobility edge Ec, we thus rely on fits of
the γ(E) curves with several fitting functionals [linear,
γ(E) ∼ E − Ec; power-law, γ(E) ∼ Eα − Eα

c ; and log-
arithmic, γ(E) ∼ ln(E/Ec)]. The result is found to be
almost independent of the fitting functional and thus pro-
vides a reliable estimate of the mobility edge. Figure 2(b)
shows the mobility edge versus the quasiperiodic ampli-
tude for various interaction strengths. The errorlike bars
represent the edges of the minigap containing the mobil-
ity edge. The uncertainty on the fitted mobility edge is
smaller than these bars.

In order to interpret those results, we now turn to an
analytical treatment of the localization problem. The

main difficulty relies on the fact that localization in
quasiperiodic systems occurs for strong quasiperiodic am-
plitude ∆ [12]. For this reason, the lowest-order pertur-
bation theory, which proved successful for 1D disordered
systems [16, 17], fails here [37]. To overcome this issue,
we develop an approach based on a generic expansion in
harmonics of the quasiperiodic potential. The structure
of the GPE (2) shows that the field φj takes the form of
a series of harmonics of the quasiperiodic potential. The
density field nj thus reads nj = (µ− Ṽj)/U , where

Ṽj =
∑

p≥1

Ap cos[p(2πrj + ϕ)] (4)

is a multiharmonic quasiperiodic field, the coefficients
of which can be computed iteratively [31]. Using the
energy-dependent linear transform [17]

g±j = ±ρ
±1/2
E (uj − vj) + ρ

∓1/2
E (uj + vj) (5)

where ρE =
√

1 + (µ/E)2+µ/E, the BdGEs (3) exactly
rewrite

−(ρ−1
E E + T̂ )g+j +

[

Vj−
3 + ρ2E
1 + ρ2E

Ṽj

]

g+j =
2ρE Ṽj

1 + ρ2E
g−j (6)

(ρEE − T̂ )g−j +

[

Vj−
1 + 3ρ2E
1 + ρ2E

Ṽj

]

g−j =
2ρE Ṽj

1 + ρ2E
g+j . (7)

The solution of these equations is significantly simplified
by noticing that the lattice-space Green function of the
operator −T̂ + ρEE is of width

√

t/ρEE and amplitude

1/(ρEE + 2t)
√

1− [2t/(ρEE + 2t)]2. Hence, for ρEE ≫
t, this operator can be replaced by the local operator
ρEE+2t in Eq. (7). It is then straightforward to write the
expression of g−j as a function of g+j and of the potentials

Vj and Ṽj . Inserting this expression into Eq. (6) we find
a closed equation for g+j ,

− T̂ g+j + VE
j g+j = Eρ−1

E g+j , (8)

with the effective potential

VE
j ≃ Vj−

3 + ρ2E
1 + ρ2E

Ṽj−

(

2ρE
1 + ρ2E

)2

Ṽ 2
j

ρEE + 2t+ Vj −
1 + 3ρ2E
1 + ρ2E

Ṽj

. (9)

Using exact diagonalization of Eq. (8) with the poten-
tial (9) around energy E, we have checked that the Lya-
punov exponents and the localization transition given
by our effective model coincide with those found us-
ing direct diagonalization of the BdGEs (3). It vali-
dates the effective model (8)-(9) and the approximation

−T̂ + ρEE ≃ 2t+ ρEE used above.
In this model, the quantity VE

j is a multiharmonic peri-
odic potential of spacing 1/r incommensurate with that
of the main lattice, which is unity. Such systems are
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known to exhibit in general an energy-dependent mobil-
ity edge with low-energy extended states and high-energy
localized states [33–36]. This holds except in the partic-
ular case of self-dual models, among which the Aubry-
André model is a celebrated example [12]. Self-duality
requires a specific relation between the amplitudes of the
pth harmonics and of the tunneling rate to the pth neigh-
bors. The latter does not apply in our case since tunnel-
ing is strictly restricted to the first neighbors. It qualita-
tively explains the localization transition of the collective
excitations reported here.
Localization properties in quasiperiodic systems can be

further inferred from locator perturbation theory [33].
Here the localization criterion roughly corresponds to
the convergence of the self-energy in the thermodynamic
limit, which reads D(E) > 1 where D(E) is the so-called
localization function. In the case of Eq. (8), it reads

D(E) = exp

(

r

∫ 1/r

0

dx ln

∣

∣

∣

∣

Eρ−1
E − 2t− VE(x)

t

∣

∣

∣

∣

)

. (10)

Equation (10) can, in principle, be applied to the full ef-
fective potential VE(x). To obtain analytical results, it is,
however, worth truncating the infinite series of harmon-
ics in VE . Keeping only one harmonic is not sufficient
to capture the physics even qualitatively, since it would
unphysically restore duality and change the universality
class of the localization transition. On the other hand,
beyond two, the number of harmonics does not change
the universality class. We may thus restrict ourselves to
the two lowest-order harmonics, which are generated in
first instance in second-order perturbation theory. As we
shall see, this order of expansion turns out to be suffi-
cient for a significant part of the localization diagram of
Fig. 1. It yields the effective two-harmonic potential

VE
j ≃ ∆

(0)
E +∆

(1)
E cos(2πrj + ϕ) + ∆

(2)
E cos[2(2πrj + ϕ)]

(11)
with the amplitudes

∆
(0)
E =

3+ρ2E
1+ρ2E

∆2

4Un
(fr−f2

r )−
2ρ2E

(1+ρ2E)
2

∆2f2
r

ρEE+2t
(12)

∆
(1)
E = ∆

[

1− 3 + ρ2E
1 + ρ2E

fr

]

(13)

∆
(2)
E =

3 + ρ2E
1 + ρ2E

∆2

4Un

[

f2
r

2
+

(

fr −
3

2
f2
r

)

f2r

]

− 2ρ2E
(1 + ρ2E)

2

∆2f2
r

ρEE + 2t
. (14)

and fr =
1

1 + 2t sin2(πr)/Un
[31]. The results of the

locator perturbation theory applied to the two-harmonic
potential (11) is shown in Fig 2(b). It predicts the correct
localization transition with collective excitations that are
extended at low energy and localized at high energy, and
a mobility edge that is in very good agreement with the
full numerical result. Perturbation theory beyond sec-
ond order generates high-order harmonics in the effec-
tive potential and renormalizes the amplitudes ∆(p). For
Un . 3t, we find that they induce negligible effects and
do not significantly affect the prediction for the mobility
edge. For higher values of U , however, second-order per-
turbation theory is not sufficient to accurately estimate
the density background, and higher-order terms should
be included.

In summary, we have shown that the collective excita-
tions of lattice Bose superfluids subjected to a single-
harmonic quasiperiodic potential undergo a nontrivial
localization transition with extended low-energy states
and localized high-energy states. Therefore the inter-
actions change the universality class of the localization
transition, in striking contrast with the purely disordered
case [16, 17]. In the quasiperiodic case the transition can
be understood as the result of the scattering of the ex-
citations from the potential and the density background,
which contains an infinite series of harmonics of the po-
tential. It could be observed in ultracold-atom experi-
ments, using for instance spectroscopy techniques, which
give direct access to the excitations [38], or in quench
experiments, which generate collective excitations that
govern the propagation of experimentally-observable cor-
relations [24, 39]. It could also be observed in photonic
crystals, which can combine quasiperdiodic structures [5]
and photon nonlinearities [40]. Finally, it would be inter-
esting to study the counterpart of the localization transi-
tion discussed here in Fermi superconductors, which may
directly apply to electronic quasicrystals.
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Supplemental Material

This supplemental material aims at providing some details about the harmonic structure of the density profile and
the effective potential VE

j , as well as the series expansion used to determine them.

1. Series expansion of the density background

To determine the density background nj ≡ φ2
j , we solve the Gross-Pitaevskii equation (GPE) together with the

normalization condition n = 1
LΣjnj where L is the number of sites and n is the averaged density. To do so, we

perform a series expansion in powers of the quasiperiodic potential Vj . In the absence of an external potential, we
have φj =

√
n and the chemical potential µ = Un. In the presence of an external potential, we then write

φj =
√
n
(

φ
(0)
j + φ

(1)
j + φ

(2)
j ...

)

(S1)

µ = Un
(

µ(0) + µ(1) + µ(2) + ...
)

(S2)

nj = n
(

n
(0)
j + n

(1)
j + n

(2)
j ...

)

(S3)

where the superscripts denote increasing orders in the quasiperiodic amplitude ∆, and φ
(0)
j = 1, n

(0)
j = 1, µ(0) = 1.

Notice that the chemical potential has to be expanded also to fulfill the normalization condition. Inserting the
expansions (S1) and (S2) in the GPE [Eq. (2) of the paper] and the expansion (S3) in the normalization condition,
we get

Un
(

µ(0) + µ(1) + ...
)

(φ
(0)
j +φ

(1)
j + ...) = −T̂

(

φ
(0)
j + φ

(1)
j + ...

)

+Vj

(

φ
(0)
j + φ

(1)
j + ...

)

+Un
(

φ
(0)
j + φ

(1)
j + ...

)3

(S4)

and

1

L

∑

j

(

φ
(0)
j + φ

(1)
j + ...

)2

= 1. (S5)

Then, collecting all the terms of same order p in the quasiperiodic amplitude yields

(

1− 1

2Un
T̂

)

φ
(p)
j = − Vj

2Un
φ
(p−1)
j − 1

2

∑

k,ℓ,m=p,0≤k,ℓ,m≤p−1

φ
(k)
j φ

(ℓ)
j φ

(m)
j +

1

2

∑

1≤k≤p−1

µ(k)φ
(p−k)
j +

µ(p)

2
(S6)

and

∑

j



2φ
(0)
j φ

(p)
j +

∑

1≤k≤p−1

φ
(k)
j φ

(p−k)
j



 = 0. (S7)

Equations (S6) and (S7) can then be used to compute all φ
(p)
j and µ(p) at any order p iteratively. The iteration process

works as follows. Given all φ
(k)
j and µ(k) at orders k < p, we calculate φ

(p)
j as a function of µ(p) from Eq. (S6) by

inverting the operator 1− T̂ /2Un. The quantity µ(p) is then found by inserting this expression for φ
(p)
j into Eq. (S7).

Having determined φ
(p)
j , we then find the density field using Eq. (S3), whose expansion in powers of the quasiperiodic

amplitude writes

n
(p)
j =

∑

0≤k,ℓ≤p,k+ℓ=p

φ
(k)
j φ

(ℓ)
j . (S8)

This procedure is completely general and can be applied to any external potential Vj . In the case of the quasiperiodic

potential Vj = ∆cos(2πrj+ϕ), the above iterative process is fully algebraic because the operator 1−T̂/2Un in Eq. (S6)
can be analytically inverted at any order (see below). We have implemented this expansion up to order 50 and found
excellent agreement with the direct numerical solution of the GPE (2). It provides a cross-check of the precision of
the numerical solution and of the convergence of the present analytical expansion.
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2. Analytical expansion in the case of a quasiperiodic potential

We now give some explicit formulas for the lowest order terms and discuss the harmonic structure of the density
background nj. As in the paper, we generically write the density field nj

nj = (µ− Ṽj)/U, (S9)

where the field Ṽ includes terms of all orders.

At first order, Eq. (S6) reduces to −T̂φ
(1)
j + 2Unφ

(1)
j = −Vj + Unµ(1). It is straightforward to solve it in Fourier

space where the operator T̂ is diagonal. It yields φ
(1)
k = −Vk − Unµ(1)δk,0

ε0k + 2Un
where ε0k = 4t sin2(k/2). Inserting this

expression into Eq. (S7), we find µ(1) = Vk=0/Un = 0 and φ
(1)
k = − Vk

ε0k + 2Un
. Remarkably, since the quasiperiodic

potential contains only one spatial frequency, Vk = ∆(eiϕδk,+2πr + e−iϕδk,−2πr)/2, one can immediately get back to
real space and write

φ
(1)
j = − ∆

2Un
fr cos(2πrj + ϕ), (S10)

where fr =
1

1 + ε02πr/2Un
. Hence, to lowest order, the density profile is quasiperiodic field. It follows the modulations

of the quasiperiodic potential with a reduced amplitude since fr < 1. The factor fr is a remainder of the nonlocal
operator 1 − T̂ /2Un in the l.h.s. of Eq. (S6), which reduces to an algebraic operation in the case of a quasiperiodic

potential. Then, Eqs. (S8) and (S9) yield the first order term of the field Ṽj . It reads Ṽ
(1)
j = −2Unφ

(1)
j where φ

(1)
j is

given by Eq. (S10), i.e.

Ṽ
(1)
j = ∆fr cos(2πrj + ϕ). (S11)

The next orders are found following the same process, which remains algebraic to any order in the case of the
quasiperiodic potential. To second order, it yields the term

φ
(2)
j =

(

∆

2Un

)2
[

− f2
r

4
+

(

fr −
3

2
f2
r

)

f2r
cos[2(2πrj + ϕ)]

2

]

, (S12)

and a negative shift on the chemical potential,

µ(2) = −
(

∆

2Un

)2

(fr − f2
r ). (S13)

The field Ṽj is then given at second order by Ṽ
(2)
j = Un[µ(2) − n

(2)
j ] = Un[µ(2) − (2φ

(2)
j + φ

(1)2
j )] where φ(1), φ(2) and

µ(2) are given by Eqs. (S10), (S12), and (S13), i.e.

Ṽ
(2)
j = − ∆2

4Un

{

fr − f2
r +

[

f2
r

2
+

(

fr −
3

2
f2
r

)

f2r

]

cos[2(2πrj + ϕ)]

}

. (S14)

Hence, the second-order terms φ
(2)
j and Ṽ

(2)
j contain a constant term and the second harmonics of the quasiperiodic

potential. Those terms are generated by the nonlinear term of the GPE: Since the first order term contains only the

first harmonics, φ
(1)
j ∝ cos(2πrj + ϕ), the product terms φ

(1)
j φ

(1)
j φ

(0)
j appearing in Eq. (S6) contain the zeroth and

second harmonics.

More generally, it is straightforward to show recursively that the terms of order p, φ
(p)
j and Ṽ

(p)
j , contain the pth

harmonics of the quasiperiodic potential, cos[p(2πrj+ϕ)], as well as all lower harmonics of same parity. In particular,

a constant term in φj and a correction to the chemical potential µ appear only at even orders. Hence, the field Ṽj

takes the multiharmonic quasiperiodic form

Ṽj =
∑

p

Ap cos[p(2πrj + ϕ)], (S15)

where the amplitude Ap of the pth harmonics is a power series of order p, Ap ∼ αp(∆/2Un)p+αp+2(∆/2Un)p+2+ ....
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3. Expansion of the effective potential VE
j

The effective potential

VE
j ≃ Vj −

3 + ρ2E
1 + ρ2E

Ṽj −

(

2ρE
1 + ρ2E

)2

Ṽ 2
j

ρEE + 2t+ Vj −
1 + 3ρ2E
1 + ρ2E

Ṽj

, (S16)

which appears in the Eq. (8) of the paper, can as well be expanded in powers of the quasiperiodic amplitude by

expanding the denominator and using the previously obtained expansions for Ṽj . Up to second order, we get

VE
j ≃ Vj −

3 + ρ2E
1 + ρ2E

Ṽ
(1)
j − 3 + ρ2E

1 + ρ2E
Ṽ

(2)
j −

(

2ρE
1 + ρ2E

)2

ρEE + 2t

(

Ṽ
(1)
j

)2

, (S17)

where Ṽ (1) and Ṽ (2) are given in Eqs. (S11) and (S14). It yields the two-harmonic effective potential

VE
j ≃ ∆

(0)
E +∆

(1)
E cos(2πrj + ϕ) + ∆

(2)
E cos[2(2πrj + ϕ)] (S18)

with the amplitudes

∆
(1)
E = ∆

[

1− 3 + ρ2E
1 + ρ2E

fr

]

(S19)

∆
(2)
E =

3 + ρ2E
1 + ρ2E

∆2

4Un

[

f2
r

2
+

(

fr −
3

2
f2
r

)

f2r

]

− 2ρ2E
(1 + ρ2E)

2

∆2f2
r

ρEE + 2t
(S20)

∆
(0)
E =

3 + ρ2E
1 + ρ2E

∆2

4Un
(fr − f2

r )−
2ρ2E

(1 + ρ2E)
2

∆2f2
r

ρEE + 2t
. (S21)


