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We study the localization of collective pair excitations in weakly-interacting Bose superfluids in
one-dimensional quasiperiodic lattices. The localization diagram is first determined numerically.
For intermediate interaction and quasiperiodic amplitude we find a sharp localization transition,
with extended low-energy states and localized high-energy states. We then develop an analytical
treatment, which allows us to quantitatively map the localization transition into that of an effective
multi-harmonic quasiperiodic system.

PACS numbers: 05.30.Jp, 67.85.-d, 05.70.Ln,

Quasiperdiodic systems, which are formed of a small
number of incommensurate sinusoidal components, con-
stitute an appealing intermediate between disordered and
periodic systems. Such structures appear naturally in
the growth of certain crystals [1] or as a result of charge-
density waves [2]. They can also be created on purpose in
crystals by molecular epitaxy [3] or with ultracold atoms
in optical potentials [4, 5]. In quasiperiodic systems, the
lack of translation invariance can induce localization of
linear waves, similarly as the phenomenon of Anderson
localization in disordered systems [6]. In quasiperiodic
systems, however, the quasi-repetition of finite patterns
radically changes the localization picture. For instance,
in a one-dimensional disordered system, any quantum
particle is localized with an energy-dependent localiza-
tion length [7, 8]. In contrast, for a quasiperiodic system
made of a single incommensurate sinusoidal modulation
of a main periodic lattice, there is a localization transition
for some critical strength of the quasiperiodic component
beyond which the states are localized with a localization
length that is independent of the energy [9].

The extension of the concept of localization to interact-
ing quantum systems is attracting a considerable atten-
tion as regards phase diagrams [10], many-body localiza-
tion transitions [11], and localization of collective excita-
tions [12–14]. These issues have been first investigated for
purely disordered systems and extensions to quasiperi-
odic systems are just starting. So far, most studies fo-
cused on the phase diagram of one-dimensional bosons in
quasiperiodic lattices at zero temperature [15, 16], finite
temperature [17], and infinite temperature [18]. Con-
versely, the localization of collective excitations remains
largely open. This issue is particularly important be-
cause the transport of collective excitations governs many
dynamical effects in correlated quantum systems [19],
for instance the propagation of correlations in recently-
developed quench experiments [20].

Here we study the localization of collective pair excita-
tions in weakly-interacting Bose superfluids subjected to
a one-dimensional quasiperiodic lattice. We first deter-

mine the localization diagram numerically and show that,
for intermediate interaction and quasiperiodic amplitude,
there is a sharp localization transition, separating bands
of states that are extended at low energy and localized at
high energy. We then develop an analytical treatment,
which allows us to reproduce the numerical results ac-
curately. Moreover, it allows us to quantitatively map
the localization transition into that of an effective multi-
harmonic quasiperiodic system.

The starting point of our study is the Aubry-André-
Hubbard Hamiltonian,

Ĥ = −
∑

j,l

Tj,lâ
†
j âl +

∑

j

Vj â
†
j âj +

U

2

∑

j

â†j â
†
j âj âj , (1)

which governs the low-energy physics of interacting
bosons in one-dimensional (1D) quasiperiodic lattices.

In Eq. (1), âj and â†j are the bosonic annihilation and
creation operators at the lattice site j. The first term
represents quantum tunneling with the hopping matrix
T̂ , which includes nearest-neighbor tunnelling, Tj,j±1 = t
and Tj,l = 0 for |j − l| > 1, as well as the homogeneous
on-site term Tj,j = −2t, for convenience. Within this
convention, the free-particle spectrum, εk = 4t sin2(k/2),
is centered on ε = 2t with the band edges ε = 0 and
ε = 4t. The second term represents the on-site quasiperi-
odic potential modulation, Vj = ∆cos(2πrj + ϕ), where
ϕ is a phase, ∆ is the quasiperiodic amplitude, and r is
an irrational number. The third term represents on-site
repulsive interactions with the interaction energy U > 0.

In the weakly-interacting regime with high occupation
number per lattice site (n ≫ U/t, with n the mean den-
sity), we can rely on meanfield theory [21]. A similar ap-
proach has been presented elsewhere for disordered sys-
tems in continuous [14, 22, 23] or lattice [24] spaces, and
we just outline it here. The density background nj is first
determined by minimizing the classical energy functional,
obtained by replacing the operator âj by the real-valued
field φj ≡ √

nj in Eq. (1). It yields the Gross-Pitaevskii
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equation (GPE),

µφj = −T̂φj + Vjφj + Uφ3
j (2)

where the term T̂ φj is a shortcut for the hopping matrix
contribution t(φj+1 − 2φj + φj−1) and µ is the chemi-
cal potential. The collective pair excitations of the Bose
superfluid, which are represented by two fields uj and
vj , are then found by expanding Hamiltonian (1) up to
second order in the Bogoliubov operator δn̂j/2

√
nj +

i
√
njδθ̂j , where δn̂j and δθ̂j are the density and phase

fluctuation operators, and diagonalizing the resulting
quadratic Hamiltonian. The excitation energy E and
wavefunctions uj and vj are the solutions of the Bogoli-
ubov de-Gennes equations (BdGEs)

[

−T̂+Vj−µ+2Unj Unj

−Unj T̂−Vj+µ−2Unj

][

uj

vj

]

=E

[

uj

vj

]

. (3)

Equations (2) and (3) form the complete set to deter-
mine the elementary excitations of the Bose fluid in the
quasiperiodic lattice.
We first solve Eqs. (2) and (3) numerically in the 1D

quasiperiodic lattice. The number of lattice sites is cho-
sen to be a Fibonacci number Fp and r is taken as the
ratio Fp−1/Fp. It allows us to use periodic boundary
conditions and a good approximation of an incommensu-
rate ratio (

√
5 − 1)/2 [9]. In practice, we use Fp = 610,

which yields r = (
√
5−1)/2±0.000002. The density back-

ground is computed by solving the GPE using imaginary-
time propagation with a Crank-Nicolson scheme [25].
The good numerical convergence of the imaginary-time
propagation of the GPE is a delicate point for the sub-
sequent determination of the collective excitations us-
ing Eq. (3). The convergence criterion applies to the
effective, imaginary time-dependent chemical potential

µ(τ) ≡ −~

2
d
dτ log

(

∑

j nj

)

. We have checked that the

density profile is unaffected when the precision threshold
varies from 10−8 to 10−15. The same holds when the
imaginary time step ∆τ used in the propagation varies
from 0.01/t to 0.5/t. Moreover, the density profile pre-
cisely agrees with perturbative expansion of the GPE so-
lution implemented up to order 50 [26]. All together,
the precision on the density profile nj is of the order of
10−8 for all results presented here. The excitations are
then computed by exact diagonalization of the matrix in
Eq. (3) using Lanczos algorithm for sparse non-Hermitian
eigenproblems [25].
The numerical results are summarized on the diagram

of Fig. 1(a). It displays three different regimes. For weak
quasiperiodic amplitude ∆ and strong interaction U , the
density background is fully connected and all excitations
are extended (‘extended regime’). For a given interac-
tion strength U and tunneling t, the density modulations
increase with the quasiperiodic amplitude ∆. Above a
critical value of ∆

c
, the density profile gets fragmented
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Figure 1. Numerical results. (a) Localization diagram as
a function of the interaction strength and the quasiperiodic
amplitude. It displays three regimes: (i) ‘Extended regime’
where the density background is connected and all excita-
tions are extended; (ii) ‘Fragmented regime’ where the density
background is fragmented; (iii) ‘Extended-localized regime’
where the density background is connected and the excita-
tion spectrum shows a delocalization-localization transition
with exponentially localized high-energy states and extended
low-energy states. (b)-(c) Typical excitation wavefunction u
in the localized (b) and extended (c) regimes, plotted in semi-
log scale and for the 150 first lattice sites (similar plots are
found for the v wavefunctions). The two panels correspond to
two excitations with consecutive energies above (b) and below
(c) the mobility edge for Un/t = 1.75 and ∆/t = 3.3.

.

(‘fragmented regime’), which yields the upper boundary
on the diagram. The fragmentation condition is chosen
to be the minimal value of ∆ such that at least one lat-
tice site has a density lower than 0.01 atom per site. We
have checked that varying this arbitrary threshold down
to 0.001 yields insignificant changes of the fragmenta-
tion boundary. Moreover the latter is in good agreement
with the experimental observation of Ref. [4]. In the frag-
mented regime, the density profile is cut in disconnected
pieces. It corresponds to trivial localization, a case that
we disregard in the following. Notice that in the limit
U → 0, we recover the critical value ∆

c
= 2t, that is

the localization transition of the noninteracting Aubry-
André model. The most interesting regime appears for
intermediate quasiperiodic amplitude (‘ext-loc regime’).
In this regime, although the density background is fully
connected, we find a localization transition of the collec-
tive excitations. Remarkably enough, they are the high-
energy excitations that are exponentially localized over a
few lattice sites [see Fig. 1(b)] while the low-energy exci-
tations are extended over the whole system [see Fig. 1(c)].
This transition is sharp as exemplified on Figs. 1(b) and
(c), which correspond to two excitations of consecutive
energies for Un = 1.75t and ∆ = 3.3t.
In order to characterize the localization transition,

we compute two Lyapunov exponents for the excita-
tions, which correspond to the two Bogoliubov wave-
functions, γu(E) ≡ − limj→∞ log |uj|/j and γv(E) ≡
− limj→∞ log |vj |/j. They are extracted from fits in the
tails of the logarithm of the wavefunctions u and v. Fig-
ure 2(a) displays those Lyapunov exponents versus the
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Figure 2. (a) Lyapunov exponents of the Bogoliubov wave-
functions u and v, for Un/t = 1.75 and ∆/t = 3.3, 3.5, 3.7.
The excitation spectrum is banded and displays a sharp lo-
calization transition separating extended (γ = 0) and local-
ized (γ > 0) states. (b) Mobility edge as a function of the
quasiperiodic amplitude ∆/t as extracted from power-law fits
to the numerical γ(E) curves [solid lines on panel (a)]. Error-
like bars correspond to the edges of the minigap containing
the mobility edge. The dotted, red line shows the analyti-
cal prediction of the locator theory applied to the effective
model (8) with the potential (11).

excitation energy E, for fixed interaction and disorder
strengths. The Lyapunov exponents γu and γv are indis-
tinguishable and herafter we omit the wavefunction index
u or v. In the ‘ext-loc’ regime the Lyapunov exponent
curves clearly show the transition, separating extended
(γ = 0) and localized (γ > 0) states. The excitation
spectrum splits in several bands separated by minigaps, a
general feature in quasiperiodic systems [9, 27–30]. The
transition generally lies into one of the minigaps. To
determine the mobility edge Ec, we thus rely on fits of
the γ(E) curves wih several fitting functionals [linear,
γ(E) ∼ E − Ec; power-law, γ(E) ∼ Eα − Eα

c ; and log-
arithmic, γ(E) ∼ log(E/Ec)]. The result is found to be
almost independent of the fitting functional and thus pro-
vides a reliable estimate of the mobility edge. Figure 2(b)
shows the mobility edge versus the quasiperiodic ampli-
tude for various interaction strengths. The error-like bars
represent the edges of the minigap containing the mobil-
ity edge. The uncertainty on the fitted mobility edge is

smaller than these bars.
In order to interpret those results, we now turn to an

analytical treatment of the localization problem. The
main difficulty relies on the fact that localization in
quasiperiodic systems occurs for strong quasiperiodic am-
plitude ∆ [9]. For this reason, the lowest-order pertur-
bation theory, which proved successful for 1D disordered
systems [13, 14], fails here [31]. To overcome this issue,
we develop an approach based on a generic expansion in
harmonics of the quasiperiodic potential. The structure
of the GPE (2) shows that the field φj takes the form of
a series of harmonics of the quasiperiodic potential. The
density field nj thus reads nj = (µ− Ṽj)/U , where

Ṽj =
∑

p≥1

Ap cos[p(2πrj + ϕ)] (4)

is a multi-harmonic quasiperiodic field, the coefficients
of which can be computed iteratively [26]. Using the
energy-dependent linear transform [14]

g±j = ±ρ
±1/2
E (uj − vj) + ρ

∓1/2
E (uj + vj) (5)

where ρE =
√

1 + (µ/E)2+µ/E, the BdGEs (3) exactly
rewrite

−(ρ−1
E E + T̂ )g+j +

[

Vj−
3 + ρ2E
1 + ρ2E

Ṽj

]

g+j =
2ρE Ṽj

1 + ρ2E
g−j (6)

(ρEE − T̂ )g−j +

[

Vj−
1 + 3ρ2E
1 + ρ2E

Ṽj

]

g−j =
2ρE Ṽj

1 + ρ2E
g+j . (7)

The solution of these equations is significantly simplified
by noticing that the lattice-space Green function of the
operator −T̂ + ρEE is of width

√

t/ρEE and amplitude

1/(ρEE + 2t)
√

1− [2t/(ρEE + 2t)]2. Hence, for ρEE ≫
t, this operator can be replaced by the local operator
ρEE+2t in Eq. (7). It is then straightforward to write the
expression of g−j as a function of g+j and of the potentials

Vj and Ṽj . Inserting this expression into Eq. (6) we find
a closed equation for g+j ,

− T̂ g+j + VE
j g+j = Eρ−1

E g+j , (8)

with the effective potential

VE
j ≃ Vj−

3 + ρ2E
1 + ρ2E

Ṽj−

(

2ρE
1 + ρ2E

)2

Ṽ 2
j

ρEE + 2t+ Vj −
1 + 3ρ2E
1 + ρ2E

Ṽj

. (9)

Using exact diagonalization of Eq. (8) with the poten-
tial (9) around energy E, we have checked that the Lya-
punov exponents and the localization transition given
by our effective model coincide with those found us-
ing direct diagonalization of the BdGEs (3). It vali-
dates the effective model (8)-(9) and the approximation
−T̂ + ρEE ≃ 2t+ ρEE used above.
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In this model, the quantity VE
j is a multi-harmonic

periodic potential of spacing 1/r incommensurate with
that of the main lattice, which is unity. Such systems are
known to exhibit in general an energy-dependent mobil-
ity edge with low-energy extended states and high-energy
localized states [27–30]. This holds except in the partic-
ular case of self-dual models, among which the Aubry-
André model is a celebrated example [9]. Self-duality
requires a specific relation between the amplitudes of the
p-th harmonics and of the tunelling rate to the p-th neigh-
bors. The latter does not apply in our case since tunelling
is strictly restricted to the first neighbors. It qualitatively
explains the localization transition of the collective exci-
tations reported here.
Localization properties in quasiperiodic systems can be

further inferred from locator perturbation theory [27].
Here the localization criterion roughly corresponds to
the convergence of the self-energy in the thermodynamic
limit, which reads D(E) > 1 where D(E) is the so-called
localization function. In the case of Eq. (8), it reads

D(E) = exp

(

r

∫ 1/r

0

dx ln

∣

∣

∣

∣

Eρ−1
E − 2t− VE(x)

t

∣

∣

∣

∣

)

. (10)

Equation (10) can in principle be applied to the full ef-
fective potential VE(x). In order to obtain analytical
results, it is however worth truncating the infinite se-
ries of harmonics in VE. Keeping only one harmonic is
not sufficient to capture the physics even qualitatively,
since it would unphysically restore duality and change
the universality class of the localization transition. On
the other hand, beyond two, the number of harmonics
does not change the universality class. We may thus re-
strict ourselves to the two lowest-order harmonics, which
are generated in first instance in second-order perturba-
tion theory. It yields the effective two-harmonic potential

VE
j ≃ ∆

(0)
E +∆

(1)
E cos(2πrj + ϕ) + ∆

(2)
E cos[2(2πrj + ϕ)]

(11)
with the amplitudes

∆
(0)
E =

3+ρ2E
1+ρ2E

∆2

4Un
(fr−f2

r )−
2ρ2E

(1+ρ2E)
2

∆2f2
r

ρEE+2t
(12)

∆
(1)
E = ∆

[

1− 3 + ρ2E
1 + ρ2E

fr

]

(13)

∆
(2)
E =

3 + ρ2E
1 + ρ2E

∆2

4Un

[

f2
r

2
+

(

fr −
3

2
f2
r

)

f2r

]

− 2ρ2E
(1 + ρ2E)

2

∆2f2
r

ρEE + 2t
. (14)

and fr =
1

1 + 2t sin2(πr)/Un
[26]. The results of the lo-

cator perturbation theory applied to the two-harmonic
potential (11) is shown on Fig 2(b). It predicts the
correct localization transition with collective excitations

that are extended at low energy and localized at high
energy, and a mobility edge that is in very good agree-
ment with the full numerical result. Perturbation theory
beyond second order generates high-order harmonics in
the effective potential and renormalizes the amplitudes
∆(p). For U . 3t, we find that they induce negligible ef-
fects and do not significantly affect the prediction for the
mobility edge. For higher values of U , however, second-
order perturbation theory is not sufficient to accurately
estimate the density background, and higher-order terms
should be included.

In summary, we have shown that the collective exci-
tations of lattice Bose superfluids subjected to a single-
harmonic quasiperiodic potential undergo a localization
transition with extended low-energy states and localized
high-energy states. Therefore the interactions change the
universality class of the localization transition. This is in
striking contrast with the purely disordered case [13, 14].
In the quasiperiodic case the transition can be under-
stood as the result of the scattering of the excitations
from the potential and the density background, which
contains an infinite series of harmonics of the potential.
It could be observed in ultracold-atom experiments, using
for instance spectroscopy techniques, which give direct
access to the excitations [32]. Alternatively, it could be
observed in quench dynamics, where the abrupt change of
some physical parameter generates collective excitations
that govern the propagation of experimentally-observable
correlations [20, 33].
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Supplemental Material

This supplemental material aims at providing some details about the harmonic structure of the density profile and
the effective potential VE

j , as well as the series expansion used to determine them.

Series expansion of the density background

To determine the density background nj ≡ φ2
j , we solve the Gross-Pitaevskii equation (GPE) together with the

normalization condition n = 1
LΣjnj where L is the number of sites and n is the averaged density. To do so, we

perform a series expansion in powers of the quasiperiodic potential Vj . In the absence of an external potential, we
have φj =

√
n and the chemical potential µ = Un. In the presence of an external potential, we then write

φj =
√
n
(

φ
(0)
j + φ

(1)
j + φ

(2)
j ...

)

(S1)

µ = Un
(

µ(0) + µ(1) + µ(2) + ...
)

(S2)

nj = n
(

n
(0)
j + n

(1)
j + n

(2)
j ...

)

(S3)

where the superscripts denote increasing orders in the quasiperiodic amplitude ∆, and φ
(0)
j = 1, n

(0)
j = 1, µ(0) = 1.

Notice that the chemical potential has to be expanded also to fulfill the normalization condition. Inserting the
expansions (S1) and (S2) in the GPE [Eq. (2) of the paper] and the expansion (S3) in the normalization condition,
we get

Un
(

µ(0) + µ(1) + ...
)

(φ
(0)
j +φ

(1)
j + ...) = −T̂

(

φ
(0)
j + φ

(1)
j + ...

)

+Vj

(

φ
(0)
j + φ

(1)
j + ...

)

+Un
(

φ
(0)
j + φ

(1)
j + ...

)3

(S4)

and

1

L

∑

j

(

φ
(0)
j + φ

(1)
j + ...

)2

= 1. (S5)

Then, collecting all the terms of same order p in the quasiperiodic amplitude yields
(

1− 1

2Un
T̂

)

φ
(p)
j = − Vj

2Un
φ
(p−1)
j − 1

2

∑

k,ℓ,m=p,0≤k,ℓ,m≤p−1

φ
(k)
j φ

(ℓ)
j φ

(m)
j +

1

2

∑

1≤k≤p−1

µ(k)φ
(p−k)
j +

µ(p)

2
(S6)

and

∑

j



2φ
(0)
j φ

(p)
j +

∑

1≤k≤p−1

φ
(k)
j φ

(p−k)
j



 = 0. (S7)

Equations (S6) and (S7) can then be used to compute all φ
(p)
j and µ(p) at any order p iteratively. The iteration process

works as follows. Given all φ
(k)
j and µ(k) at orders k < p, we calculate φ

(p)
j as a function of µ(p) from Eq. (S6) by

inverting the operator 1− T̂ /2Un. The quantity µ(p) is then found by inserting this expression for φ
(p)
j into Eq. (S7).

Having determined φ
(p)
j , we then find the density field using Eq. (S3), whose expansion in powers of the quasiperiodic

amplitude writes

n
(p)
j =

∑

0≤k,ℓ≤p,k+ℓ=p

φ
(k)
j φ

(ℓ)
j . (S8)

This procedure is completely general and can be applied to any external potential Vj . In the case of the quasiperiodic

potential Vj = ∆cos(2πrj+ϕ), the above iterative process is fully algebraic because the operator 1−T̂/2Un in Eq. (S6)
can be analytically inverted at any order (see below). We have implemented this expansion up to order 50 and found
excellent agreement with the direct numerical solution of the GPE (2). It provides a cross-check of the precision of
the numerical solution and of the convergence of the present analytical expansion.
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Analytical expansion in the case of a quasiperiodic potential

We now give some explicit formulas for the lowest order terms and discuss the harmonic structure of the density
background nj. As in the paper, we generically write the density field nj

nj = (µ− Ṽj)/U, (S9)

where the field Ṽ includes terms of all orders.

At first order, Eq. (S6) reduces to −T̂φ
(1)
j + 2Unφ

(1)
j = −Vj + Unµ(1). It is straightforward to solve it in Fourier

space where the operator T̂ is diagonal. It yields φ
(1)
k = −Vk − Unµ(1)δk,0

ε0k + 2Un
where ε0k = 4t sin2(k/2). Inserting this

expression into Eq. (S7), we find µ(1) = Vk=0/Un = 0 and φ
(1)
k = − Vk

ε0k + 2Un
. Remarkably, since the quasiperiodic

potential contains only one spatial frequency, Vk = ∆(eiϕδk,+2πr + e−iϕδk,−2πr)/2, one can immediately get back to
real space and write

φ
(1)
j = − ∆

2Un
fr cos(2πrj + ϕ), (S10)

where fr =
1

1 + ε02πr/2Un
. Hence, to lowest order, the density profile is quasiperiodic field. It follows the modulations

of the quasiperiodic potential with a reduced amplitude since fr < 1. The factor fr is a remainder of the nonlocal
operator 1 − T̂ /2Un in the l.h.s. of Eq. (S6), which reduces to an algebraic operation in the case of a quasiperiodic

potential. Then, Eqs. (S8) and (S9) yield the first order term of the field Ṽj . It reads Ṽ
(1)
j = −2Unφ

(1)
j where φ

(1)
j is

given by Eq. (S10), i.e.

Ṽ
(1)
j = ∆fr cos(2πrj + ϕ). (S11)

The next orders are found following the same process, which remains algebraic to any order in the case of the
quasiperiodic potential. To second order, it yields the term

φ
(2)
j =

(

∆

2Un

)2
[

− f2
r

4
+

(

fr −
3

2
f2
r

)

f2r
cos[2(2πrj + ϕ)]

2

]

, (S12)

and a negative shift on the chemical potential,

µ(2) = −
(

∆

2Un

)2

(fr − f2
r ). (S13)

The field Ṽj is then given at second order by Ṽ
(2)
j = Un[µ(2) − n

(2)
j ] = Un[µ(2) − (2φ

(2)
j + φ

(1)2
j )] where φ(1), φ(2) and

µ(2) are given by Eqs. (S10), (S12), and (S13), i.e.

Ṽ
(2)
j = − ∆2

4Un

{

fr − f2
r +

[

f2
r

2
+

(

fr −
3

2
f2
r

)

f2r

]

cos[2(2πrj + ϕ)]

}

. (S14)

Hence, the second-order terms φ
(2)
j and Ṽ

(2)
j contain a constant term and the second harmonics of the quasiperiodic

potential. Those terms are generated by the nonlinear term of the GPE: Since the first order term contains only the

first harmonics, φ
(1)
j ∝ cos(2πrj + ϕ), the product terms φ

(1)
j φ

(1)
j φ

(0)
j appearing in Eq. (S6) contain the zeroth and

second harmonics.

More generally, it is straightforward to show recursively that the terms of order p, φ
(p)
j and Ṽ

(p)
j , contain the p-th

harmonics of the quasiperiodic potential, cos[p(2πrj+ϕ)], as well as all lower harmonics of same parity. In particular,
a constant term in φj and a correction to the chemical potential µ appear only at even orders. Hence, the field Ṽj

takes the multi-harmonic quasiperiodic form

Ṽj =
∑

p

Ap cos[p(2πrj + ϕ)], (S15)

where the amplitude Ap of the p-th harmonics is a power series of order p, Ap ∼ αp(∆/2Un)p+αp+2(∆/2Un)p+2+ ....
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Expansion of the effective potential VE
j

The effective potential

VE
j ≃ Vj −

3 + ρ2E
1 + ρ2E

Ṽj −

(

2ρE
1 + ρ2E

)2

Ṽ 2
j

ρEE + 2t+ Vj −
1 + 3ρ2E
1 + ρ2E

Ṽj

, (S16)

which appears in the Eq. (8) of the paper, can as well be expanded in powers of the quasiperiodic amplitude by
expanding the denominator and using the previously obtained expansions for Ṽj . Up to second order, we get

VE
j ≃ Vj −

3 + ρ2E
1 + ρ2E

Ṽ
(1)
j − 3 + ρ2E

1 + ρ2E
Ṽ

(2)
j −

(

2ρE
1 + ρ2E

)2

ρEE + 2t

(

Ṽ
(1)
j

)2

, (S17)

where Ṽ (1) and Ṽ (2) are given in Eqs. (S11) and (S14). It yields the two-harmonic effective potential

VE
j ≃ ∆

(0)
E +∆

(1)
E cos(2πrj + ϕ) + ∆

(2)
E cos[2(2πrj + ϕ)] (S18)

with the amplitudes

∆
(1)
E = ∆

[

1− 3 + ρ2E
1 + ρ2E

fr

]

(S19)

∆
(2)
E =

3 + ρ2E
1 + ρ2E

∆2

4Un

[

f2
r

2
+

(

fr −
3

2
f2
r

)

f2r

]

− 2ρ2E
(1 + ρ2E)

2

∆2f2
r

ρEE + 2t
(S20)

∆
(0)
E =

3 + ρ2E
1 + ρ2E

∆2

4Un
(fr − f2

r )−
2ρ2E

(1 + ρ2E)
2

∆2f2
r

ρEE + 2t
. (S21)


