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Abstract

We theoretically investigate the quantum statistical properties of light transmitted through an

atomic medium with strong optical non-linearity induced by Rydberg-Rydberg van der Waals in-

teractions. In our setup, atoms are located in a cavity and non-resonantly driven on a two-photon

transition from their ground state to a Rydberg level via an intermediate state by the combina-

tion of the weak signal field and a strong control beam. To characterize the transmitted light we

compute the second-order correlation function g(2) (τ). The simulations we obtained on the specific

case of rubidium atoms suggest that the bunched or antibunched nature of the outgoing beam can

be chosen at will by appropriately tuning the physical parameters.
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I. INTRODUCTION

In an optically non-linear atomic medium, dispersion and absorption of a classical light

beam depend on powers of its amplitude [1]. At the quantum level, dispersive optical non-

linearities translate into effective interactions between photons. The ability to achieve such

strong quantum optical non-linearities is of prominent importance in quantum communica-

tion and computation for it would allow to implement photonic conditional two-qubit gates.

The standard Kerr dispersive non linearities obtained in non-interacting atomic ensembles,

either in off-resonant two-level or resonant three-level configurations involving Electromag-

netically Induced Transparency (EIT), are too small to allow for quantum non-linear optical

manipulations. To further enhance such non-linearities, EIT protocols were put forward in

which the upper level of the ladder is a Rydberg level. In such schemes, the strong van

der Waals interactions between Rydberg atoms result in a cooperative Rybderg blockade

phenomenon [2–4], where each Rydberg atom prevents the excitation of its neighbors inside

a "blockade sphere". This Rydberg blockade deeply changes the EIT profile and leads to

magnified non-linear susceptibilities [5–8]. In particular, giant dispersive non-linear effects

were experimentally obtained in an off-resonant Rydberg-EIT scheme using cold rubidium

atoms placed in an optical cavity [9, 10]. In this paper, we theoretically investigate the quan-

tum statistical properties of the light generated in the latter protocol. Note that, contrary

to other theoretical works, e.g. [11, 12], here, we are interested in the dispersive regime.

Moreover, since we place the atoms in a cavity rather than in free-space, the theoretical

framework and calculations we perform also differ from [11, 12]. In particular, a technical

benefit of our approach is that we are not restricted to considering only photon pairs but

could, in principle, investigate higher-order correlations.

We first write the dynamical equations for the system of interacting three-level atoms

coupled to the strong control field and the non-resonant cavity mode, fed by the probe

beam. We show that, under some assumptions, the system effectively behaves as a large

spin coupled to the cavity mode [13]. We then compute the steady-state second-order

correlation function to characterize the emission of photons out of the cavity. Our numerical

simulations suggest that the bunched or antibunched nature of the outgoing light as well

as its coherence time may be controlled through adjusting the detuning between the cavity

mode and probe field frequencies.
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The paper is structured as follows. In Sec. II, we present our setup and the assumptions

we make to compute its dynamics. We also explain the analytical and numerical methods

we employ to calculate the second-order g(2) correlation function of the outgoing light beam.

In Sec. III, we present and interpret the results of the simulations we obtained for g(2) (0)

and g(2) (τ > 0) on the specific experimental case considered in [9]. Finally, we conclude

in Sec. IV by evoking open questions and perspectives of our work. Appendices address

supplementary technical details which are omitted in the text for readability.

II. MODEL AND METHODS

The system we consider comprises N atoms which present a three-level ladder structure

with a ground |g〉, intermediate |e〉 and Rydberg states |r〉 (see Fig. II.1). The energy of

the atomic level |k = g, e, r〉 is denoted by ~ωk (by convention ωg = 0) and the dipole decay

rates from the intermediate and Rydberg states are denoted by γe and γr, respectively.

The transitions |g〉 ↔ |e〉 and |e〉 ↔ |r〉 are respectively driven by a weak probe field of

frequency ωp and a strong control field of frequency ωcf . To limit absorption, both fields are

off-resonant, the respective detunings are given by ∆e ≡ (ωp − ωe) and ∆r ≡ (ωp + ωcf − ωr).

Moreover, to enhance dispersive effects while keeping a high input-output coupling efficiency,

the atoms are placed in an optical low-finesse cavity. The transition |g〉 ↔ |e〉 is supposed

in the neighbourhood of a cavity resonance. The frequency and annihilation operator of the

corresponding mode are denoted by ωc and a, respectively ; the detuning of this mode with

the probe laser is defined by ∆c ≡ (ωp − ωc) and α denotes the feeding rate of the cavity mode

with the probe field, which is supposed real for simplicity. Finally, we introduce g and Ωcf

which are the single-atom coupling constant of the transition |g〉 ↔ |e〉 with the cavity mode

and the Rabi frequency of the control field on the transition |e〉 ↔ |r〉, respectively. In the

following paragraphs, we study the dynamics of the system which, under some assumptions,

is equivalent to a damped harmonic oscillator, i.e. the cavity mode, coupled to an assembly

of spins 1
2
, i.e. the Rydberg bubbles corresponding to the "super-atoms" delimited by the

Rydberg blockade spheres.

Starting from the full Hamiltonian, we perform the Rotating Wave Approximation and

adiabatically eliminate the intermediate state |e〉 as described in Appendix A. Note that

the result we obtain coincides with the lowest-order of EIT model – the non-linearity of the
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Figure II.1: a) The setup consists of N cold atoms placed in an optical cavity which is fed by

a weak (classical) laser beam of frequency ωp and a strong control laser field of frequency ωcf .

b) The atoms present a three-level ladder structure {|g〉 , |e〉 , |r〉}. The transitions |g〉 ↔ |e〉 and

|e〉 ↔ |r〉 are non-resonantly driven by the injected probe and control laser fields, respectively, with

the respective coupling strength and Rabi frequency g and Ωcf (see the text for the definitions of

the different detunings represented here).

three-level atoms is neglected, and the leading non-linear effect comes from the Rydberg-

Rydberg collisional effects. The system therefore consists of N effective two-level atoms

{|g〉 , |r〉}, with an effective power-broadened dipole decay rate from the Rydberg level

γ̃r =

(
γr +

Ω2
cfγe

4 (∆2
e + γ2e)

)
,

coupled to the cavity mode of effective decay rate

γ̃c =

(
γc +

g2Nγe
∆2

e + γ2e

)
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increased by the coupling to the atomic ensemble. The Hamiltonian reads

H̃ = −~∆̃r

(
N∑

n=1

σ(n)
rr

)
+

N∑

m<n=1

~κmnσ
(m)
rr σ(n)

rr

−~∆̃ca
†a + ~α

(
a + a†

)
+ ~geff

{
a

(
N∑

n=1

σ(n)
rg

)
+ h.c.

}

In this expression, we introduced the atomic operators σ
(n)
kl ≡ I

(1) ⊗ . . . ⊗ I
(n−1) ⊗ |k〉 〈l| ⊗

I
(n+1) ⊗ . . .⊗ I

(N) for (k, l) = g, e, r as well as the effective detunings

∆̃r ≡ ∆r −
Ω2

cf∆e

4 (∆2
e + γ2e)

and

∆̃c ≡ ∆c −
g2N∆e

∆2
e + γ2e

respectively shifted from ∆r and ∆c by the AC Stark shift of the control beam and by

the linear atomic susceptibility. The quantity κmn ≡ C6/ ‖~rm − ~rn‖6 is the van der Waals

interaction between atoms (m,n) in their Rydberg level – when atoms are in the ground or

intermediate states, their interactions are neglected, while

geff =
gΩcf

2∆e

is the effective coupling strength of the two-photon transition |g〉 → |r〉 driven by the cavity

mode and the control laser.

At this point, following [13], we introduce the Rydberg bubble approximation. In this

approach, the strong Rydberg interactions are assumed to effectively split the sample into

Nb bubbles {Bα=1,...,Nb
} each of which contains nb =

(
N
Nb

)
atoms but can only accomodate

a single Rydberg excitation, delocalized over the bubble. Note that the number of atoms

per bubble nb is approximately given by [9]

nb =
2π2ρat

3

√
|C6|

∆r − Ω2
cf/(4∆e)

where ρat is the atomic density. Each bubble can therefore be viewed as an effective spin 1
2

whose Hilbert space is spanned by

|−α〉 = |Gα〉 ≡
⊗

iα∈Bα

|giα〉

|+α〉 = |Rα〉 ≡ 1√
nb

{|rg . . . g〉+ . . .+ |g . . . gr〉}
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the ground state of the bubble Bα and its symmetric singly Rydberg excited state, respec-

tively. Introducing the bubble spin-1
2

operators s
(α)
− = ~ |−α〉 〈+α| – the operator s

(α)
− cor-

responds to the lowering operator of the spin and the annihilation of a Rydberg excitation,

one can write the Hamiltonian under the approximate form (see Appendix A)

H̃ ≈ −~∆̃ca
†a + ~α

(
a + a†

)

−~∆̃r

(Nb

2
+

Jz
~

)

+geff
√
nb

(
aJ+ + a†J−

)

where we introduced the collective angular momentum J− ≡ ∑Nb

α=1 s
(α)
− . The system is

therefore equivalent to a large spin, i.e. the assembly of spin-1
2

Rydberg bubbles, coupled to

a harmonic oscillator. Its density matrix satisfies the master equation

∂tρ̃ = Lρ̃ (II.1)

=
1

i~

[
H̃, ρ̃

]
+ γ̃c

{
2aρ̃a† − a†aρ̃− ρ̃a†a

}

+γ̃r

Nb∑

α=1

{
2s

(α)
− ρ̃s

(α)
+ − s

(α)
+ s

(α)
− ρ̃− ρ̃s

(α)
+ s

(α)
−

}

One can also write the Heisenberg-Langevin equations for the time-dependent operators

a (t) , J− (t)

∂ta =
(
i∆̃c − γ̃c

)
a− iα + igeff

√
nb

J−
~

+ ãin (II.2)

∂tJ− =
(
i∆̃r − γ̃r

)
J− + i~geff

√
NNba+ J̃in (II.3)

where ãin, J̃in ≡∑N
n=1 F̃

(n)
gr are the Langevin forces associated to a and J−, respectively. Note

that we neglected the effect of extra dephasing due to, e.g., collisions or laser fluctuations.

To study the quantum properties of the light transmitted through the cavity, we shall

compute the function g
(2)
out, which characterizes the two-photon correlations. In the input-

output formalism [14], one shows that this function simply equals the function g(2) for the

intra-cavity field (see Appendix B for details) given by

g(2) (τ) =
Tr
{
a†aeLτ

[
aρssa

†]}

Tr [a†aρss]
2 (II.4)

where ρss denotes the steady state of the system defined by Lρss = 0, see Eq. (II.1).

In the regime of small feeding parameter α, one can compute ρss numerically by

propagating in time the initial state ρ0 ≡ |Nr = 0〉 〈Nr = 0| ⊗ |nc = 0〉 〈nc = 0| (here
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|Nr = 0, 1, . . . ,Nb〉 represents the symmetric state in which Nr ≡
(Nb

2
+ Jz

~

)
bubbles are

excited, and |nc = 0, 1, . . .〉 are the Fock states of the cavity mode). To this end, one applies

the Liouvillian evolution operator eLt in a truncated basis, restricted to states of low num-

bers of excitations (typically with nc + Nr ≤ 6). The steady state is reached in the limit

of large times – ideally when t → ∞. The denominator of the ratio Eq.(II.4) is directly

obtained from ρss. To compute its numerator, one first propagates in time aρssa
† from t = 0

to τ , using the same procedure as above, then applies the operator a†a and takes the trace.

In the regime of weak feeding, it is also possible to get a perturbative expression for

g(2) (0) by computing the expansion of
〈
a†a†aa

〉
ss

and
〈
a†a
〉
ss

in powers of α. To this end,

one uses the Heisenberg equations of the system Eqs.(II.2,II.3) to derive the hierarchy of

equations relating the different mean values and correlations 〈. . .〉ss up to the fourth order in

α. After straightforward though lengthy algebra, one gets an expression for g(2) (0) which is

too cumbersome to be reproduced here but allows for faster calculations than the numerical

approach. Such a fully analytical treatment, however, cannot, to our knowledge, be extended

to g(2) (τ > 0); for τ > 0 we therefore entirely rely on numerical simulations.

To conclude this section, we consider the regime of large number of bubbles and low

number of excitations, i.e. Nb ≫ 1 and Jz
~
≪ Nb. As shown in Appendix A, the operator

b ≡ J
−

~
√Nb

is then approximately bosonic, and the term
(Nb

2
+ Jz

~

)
can be put under the form

(Nb

2
+

Jz
~

)
≈ J+J−

~2 (Nb + 1)
+

(J+J−)
2

~4 (Nb + 1)3

≈ Nb

(Nb + 1)
b†b+

N 2
b

(Nb + 1)3
b†bb†b

≈ b†b+
1

Nb

b†b†bb

Finally, we get the following approximate expression for the effective Hamiltonian

H̃ ≈ −~∆̃ca
†a + ~α

(
a + a†

)
− ~∆̃rb

†b− ~κ̄

2
b†b†bb+ ~geff

√
N
(
ab† + a†b

)

where κ̄ ≡ 2∆̃r/Nb. In this regime, the system therefore behaves as two coupled oscillators:

one is harmonic, the cavity field, the other is anharmonic, the Rydberg bubble field.

In the following section, we present and discuss the results we obtained with the specific

system used in [9]. It appears that one can choose the bunched or antibunched behaviour of

the light transmitted through the cavity by adjusting the detuning ∆c. We also show that

the time behaviour of the function g(2) (τ) depends on the regime considered, and can be
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roughly understood as resulting from the damped exchange of a single excitation between

atoms and field.

III. NUMERICAL RESULTS AND DISCUSSION

We consider the physical setup presented in [9], i.e. an ensemble of 87Rb atoms, whose

state space is restricted to the levels |g〉 =
∣∣∣5s 1

2
;F = 2

〉
, |e〉 =

∣∣∣5p 3
2
;F = 3

〉
and |r〉 =

∣∣∣95d 5
2
;F = 4

〉
with the decay rates γe = 2π × 3 MHz, and γr = 2π × 0.03 MHz. The other

physical parameters must be designed so that strong non-linearities may be observed at the

single-photon level. In the specific system considered here, we find this is achieved for a

cavity decay rate γc = 2π × 1 MHz, a volume of the sample V = 40π × 15 × 15µm3, a

sample density nat = 0.4µm−3, a control laser Rabi frequency Ωcf = 10γe, a cooperativity

C = 1000, a detuning of the intermediate level ∆e = −35γe, a detuning of the Rydberg level

∆r = 0.4γe, a cavity feeding rate α = 0.01γe. For these parameters, the cavity detuning

∆
(0)
c = −6.1γe corresponds to the maximal average number of photons in the cavity. Note

that these physical parameters are experimentally realistic and feasible.

Let us first focus on the second-order correlation function at zero time g(2) (0), represented

on Fig. III.1 a) as a function of the reduced detuning θ ≡
(
∆c −∆

(0)
c

)
/γe. The numerical

and theoretical curves are in such a good agreement for the regime considered that the

corresponding curves cannot be distinguished. One notes a strong bunching peak (B) θB =

−4.9 and a deep antibunching area centered on (A) θA = 0. This suggests that around (A),

photons are preferably emitted one by one, while around (B) they are preferably emitted

by pairs. Note, however, that, as a ratio, g(2) (0) gives only information on the relative

importance of pair and single-photon emissions. Its peaks therefore do not correspond

to maxima of photon pair emission, but to the best compromises between
〈
a†a†aa

〉
ss

and
〈
a†a
〉2
ss

, as can be checked by comparison of Fig. III.1 a) and b). Hence, pair emission might

dominate in a regime where the number of photons coming out from the cavity is actually

very small.

We now investigate the behaviour of g(2) (τ > 0) for two different values of the detuning,

i.e. θB = −4.9 and θA = 0 which respectively correspond to the peak (B) and minimum

(A) of g(2) (0). The numerical simulations we obtained are given in Fig. III.2. The plot

relative to (B) exhibits damped oscillations, alternatively showing a bunched
(
g(2) (τ) > 1

)
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or antibunched
(
g(2) (τ) < 1

)
behaviour. The plot corresponding to (A) always remains on

the antibunched side, though asymptotically tending to 1.

The features observed can be understood and satisfactorily accounted for by a simple

three-level model. Indeed, due to the weakness of α, the system, in its steady state, is

expected to contain at most two excitations (either photonic or atomic). After a pho-

ton detection at t = 0, it contains at most one excitation which can be exchanged be-

tween the cavity field and atoms, as it has been known for long [15, 16]. In other

words, the operator aρssa
† can be expanded in the space restricted to the three states

{|00〉 ≡ |Nr = 0, nc = 0〉 , |01〉 ≡ |Nr = 0, nc = 1〉 , |10〉 ≡ |Nr = 1, nc = 0〉} and the effective

non-Hermitian Hamiltonian for the system, in this subspace, takes the following form:

H3 = ~




0 α 0

α −∆̃c − iγ̃c geff
√
N

0 geff
√
N −∆̃r − iγ̃r




The oscillatory dynamical behaviour observed for g(2)(t) in the specific cases (A,B) is cor-

rectly recovered by this Hamiltonian, which validates the schematic model we used and

suggests it comprises the main physical processes at work.

To conclude this section, it is worth mentioning that the two-boson approximation,

though strictly speaking not applicable here – the parameters considered in this section in-

deed correspond to a number of bubbles Nb ≃ 2, yields, however, the qualitative behaviour

for g(2) (0). The minimum is correctly located, though slightly higher than in the spin model;

the antibunching peak is slightly shifted towards positive detunings and is weaker than in

the previous treatment. These discrepancies result from too low a value of the non-linearity

parameter κ̄ ; they can be corrected through replacing κ̄ = 2∆̃/Nb by κ̄′ = 2∆̃/ (Nb − 1)

in the two-boson Hamiltonian. We first note that κ̄ and κ̄′ coincide in the regime of large

number of bubbles. Moreover, κ̄′ makes sense in the regime of low number of bubbles: in

particular, when Nb → 1, i.e. when only one bubble is available, the non-linearity, pro-

portional to κ̄′, diverges accordingly, therefore forbidding the boson field to contain more

than one excitation. Finally, let us mention that κ̄′ can also be recovered via a perturbative

treatment of the full model which will be presented in a future paper.
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IV. CONCLUSION

In this work, we studied how the strong Rydberg-Rydberg van der Waals interactions in

an atomic medium may affect the quantum statistical properties of an incoming light beam.

In our model, atoms are located in a low finesse cavity and subject to a weak signal beam and

a strong control field. These two fields non-resonantly drive the transition from the ground

to a Rydberg level. The system was shown to effectively behave as a large spin coupled to

a damped harmonic oscillator, i.e. the assembly of Rydberg bubbles and the cavity mode,

respectively. The strong anharmonicity of the atomic spin affects the quantum statistics of

the outgoing light beam. To demonstrate this effect, we performed analytical and numerical

calculations of the second-order correlation function g(2) (τ ≥ 0). The results we obtained

on a specific physical example with rubidium atoms show indeed that the transmitted light

presents either bunched or antibunched characters, depending on the detuning between the

cavity mode and the probe field. This suggests that, in such a setup, one could design light

of arbitrary quantum statistics through appropriately adjusting the physical parameters.

In this work, we performed the Rydberg bubble approximation, which allowed us to de-

rive a tractable effective Hamiltonian. This scheme is, however, questionable: interactions

between bubbles are indeed neglected, and the different spatial arrangements of the bub-

bles in the sample are not considered. Though challenging, it would be interesting to run

full simulations of the system, rejecting those states which are too far off-resonant due to

Rydberg-Rydberg interactions. Besides validating the assumption of the present work, this

would indeed enable us to consider other regimes, such as, for instance, the case of resonant

transition towards the Rydberg level. We also implicitly made the assumption that the

cavity mode and control beam were homogeneous. Spatial variations should be included in

the model and their potential influence studied in a future work. Finally, due to the very

weak probe field regime considered in this paper, we only presented results on the function

g(2) (τ): the production of n = 3, 4, . . . correlated photons is indeed very unlikely. In princi-

ple, we can, however, numerically compute g(n) (τ) for any n > 2, which might be relevant

in a future work, if addressing stronger probe fields.
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Appendix A: Derivation of the effective Hamiltonian

1. Rotating Wave Approximation

The full Hamiltonian of the system can be written under the form

H = Ha +Hc + Va−c

Ha = ~ωe

N∑

n=1

σ(n)
ee + ~ωr

N∑

n=1

σ(n)
rr

+~Ωcf cos (ωcf t)
N∑

n=1

(
σ(n)
re + σ(n)

er

)

+

N∑

m<n=1

~κmnσ
(m)
rr σ(n)

rr

Hc = ~
[
ωca

†a + 2α cos (ωpt)
(
a+ a†

)]

Va−c =

N∑

n=1

~g
(
a+ a†

) (
σ(n)
eg + σ(n)

ge

)

where σ
(n)
αβ ≡ I

(1) ⊗ . . .⊗ I
(n−1)⊗ |α〉 〈β| ⊗ I

(n+1) ⊗ . . .⊗ I
(N), ~ωα is the energy of the atomic

level |α〉 for α = e, r (with the convention ωg = 0), and κmn ≡ C6

‖~rm−~rn‖6 denotes the van der

Waals interaction between atoms in the Rydberg level – when atoms are in the ground or

intermediate states, their interactions are neglected.

We switch to the rotating frame defined by |ψ〉 →
∣∣∣ψ̃
〉
= exp

(
− it

~
H0

)
where

H0 ≡ ~ωpa
†a + ~ωp

N∑

n=1

σ(n)
ee + ~ (ωp + ωcf)σ

(n)
rr

and perform the Rotating Wave Approximation to get the new Hamiltonian H̃ = H̃a+ H̃c+

11



Ṽa−c, where

H̃a = −~∆e

N∑

n=1

σ(n)
ee − ~∆r

N∑

n=1

σ(n)
rr

+
~Ωcf

2

N∑

n=1

(
σ(n)
re + σ(n)

er

)
+

N∑

m<n=1

~κmnσ
(m)
rr σ(n)

rr

H̃c = −~∆ca
†a + ~α

(
a+ a†

)

Ṽa−c =

N∑

n=1

~g
(
aσ(n)

eg + a†σ(n)
ge

)

with the detunings ∆c ≡ (ωp − ωc), ∆e ≡ (ωp − ωe), and ∆r ≡ (ωp + ωcf − ωr).

The corresponding Heisenberg-Langevin equations are:

d

dt
a = (i∆c − γc) a− iα− ig

N∑

i

σ(i)
ge + ain (A.1)

d

dt
σ(i)
ge = (i∆e − γe) σ

(i)
ge − i

Ωcf

2
σ(i)
gr + iga

(
σ(i)
ee − σ(i)

gg

)
+ F (i)

ge (A.2)

d

dt
σ(i)
gr = (i∆r − γr)σ

(i)
gr − i

Ωcf

2
σ(i)
ge + igaσ(i)

er (A.3)

−iσ(i)
gr

N∑

j 6=i

κijσ
(j)
rr + F (i)

gr

d

dt
σ(i)
er = {i (∆r −∆e)− γer}σ(i)

er + i
Ωcf

2

(
σ(i)
rr − σ(i)

ee

)
(A.4)

+iga†σ(i)
gr − iσ(i)

er

N∑

j 6=i

κijσ
(j)
rr + F (i)

er

where ain and F
(i)
αβ denote Langevin forces.

2. Elimination of the intermediate state

Let us now simplify the system. First, one deduces from Eq.(A.4) that σer is of second

order in the small feeding constant α. The term aσ
(i)
er can therefore be neglected in Eq.(A.3).

Moreover, since the ground state population remains dominant during the evolution of the

system we can write σ
(i)
ee − σ

(i)
gg ≃ −I ; from Eq.(A.2), the steady-state solution for σ

(i)
ge in

the far detuned regime is therefore

σ(i)
ge ≃ Ωcf

2 (∆e + iγe)
σ(i)
gr +

g

(∆e + iγe)
a+

i

(∆e + iγe)
F (i)
ge

12



Finally, substituting this relation into Eqs.(A.1,A.3) one gets

d

dt
a =

(
i∆̃c − γ̃c

)
a− iα + igeff

(
∑

i

σ(i)
gr

)
+ ãin (A.5)

d

dt
σ(i)
gr =

(
i∆̃r − γ̃r

)
σ(i)
gr + igeffa− iσ(i)

gr

(
N∑

j 6=i

κijσ
(j)
rr

)
+ F̃ (i)

gr (A.6)

where

∆̃c = ∆c −∆e

g2N

(∆2
e + γ2e)

γ̃c = γc + γe
g2N

(∆2
e + γ2e)

∆̃r = ∆r −∆e

Ω2
cf

4 (∆2
e + γ2e )

γ̃r = γr + γe
Ω2

cf

4 (∆2
e + γ2e )

geff =
gΩcf

2 (∆e + iγe)
≈ gΩcf

2∆e

are the parameters for the effective two-level model and ãin, F̃
(i)
gr are the modified Langevin

noise operators

ãin = ain +
g

(∆e + iγe)

∑

i

F (i)
ge ≈ ain +

g

∆e

∑

i

F (i)
ge

F̃ (i)
gr = F (i)

gr +
Ωcf

2 (∆e + iγe)
F (i)
ge ≈ F (i)

gr +
Ωcf

2∆e

F (i)
ge

Note that, in the absence of collisional terms, one simply recovers the standard three-level

EIT susceptibility in the far-detuned regime

da

dt
=


i∆c − γc −

g2N
Ω2

cf

4(γr−i∆r)
− i∆e


 a− iα + ãin

Finally, we get the effective Hamiltonian

H̃ = −~∆̃r

(
N∑

n=1

σ(n)
rr

)
+

N∑

m<n=1

~κmnσ
(m)
rr σ(n)

rr

−~∆̃ca
†a + ~α

(
a + a†

)
+ ~geff

{
a

(
N∑

n=1

σ(n)
rg

)
+ h.c.

}

13



3. Rybderg bubble approximation

As described in the main text, we introduce the Rydberg bubble approximation. In this

approach, the strong Rydberg interactions are assumed to effectively split the sample into

Nb bubbles {Bα=1,...,Nb
} each of which contains nb =

(
N
Nb

)
atoms but can only accomodate

a single Rydberg excitation, delocalized over the bubble. Note that the number of atoms

per bubble nb is approximately given by [9]

nb =
2π2ρat

3

√
|C6|

∆r − Ω2
cf/(4∆e)

where ρat is the atomic density. Each bubble can therefore be viewed as an effective spin 1
2

whose Hilbert space is spanned by

|−α〉 = |Gα〉 ≡
⊗

iα∈Bα

|giα〉

|+α〉 = |Rα〉 ≡ 1√
nb

{|rg . . . g〉+ . . .+ |g . . . gr〉}

the ground state of the bubble Bα and its symmetric singly Rydberg excited state, respec-

tively. Introducing the bubble Pauli operators s
(α)
− = ~ |−α〉 〈+α| – the operator s

(α)
− corre-

sponds to the lowering operator of the spin and the annihilation of a Rydberg excitation,

one can write

N∑

n=1

σ(n)
gr =

Nb∑

α=1

∑

iα∈Bα

σ(iα)
gr

≈
Nb∑

α=1

s
(α)
−
~

〈
−α

∣∣∣∣∣
∑

iα∈Bα

σ(iα)
gr

∣∣∣∣∣+α

〉

≈ √
nb

Nb∑

α=1

s
(α)
−
~

=
√
nb

J−
~

14



where we introduced the collective angular momentum J− ≡∑Nb

α=1 s
(α)
− . In the same way,

N∑

n=1

σ(n)
rr =

Nb∑

α=1

∑

iα∈Bα

σ(iα)
rr

≈
Nb∑

α=1

|+α〉 〈+α|
〈
+α

∣∣∣∣∣
∑

iα∈Bα

σ(iα)
rr

∣∣∣∣∣+α

〉

≈
Nb∑

α=1

(
1

2
+

s
(α)
z

~

)

≈
(Nb

2
+

Jz
~

)

where we used |+α〉 〈+α| ≡
(

1
2
+ s

(α)
z

~

)
. Finally, the Hamiltonian of the system takes the

approximate form

H̃ ≈ −~∆̃ca
†a + ~α

(
a + a†

)

−~∆̃r

(Nb

2
+

Jz
~

)

+geff
√
Nb

(
aJ+ + a†J−

)

which represents the interaction of the large spin J− with the cavity mode a.

4. Regime of large number of bubbles and low number of excitations

From the well-known relation J+J− = ~J2 − J2z + ~Jz we deduce the second-order operator

equation

J2z − ~Jz − ~
2Nb

2

(Nb + 2

2

)
+ J+J− = 0

In the regime of large number of bubbles Nb ≫ 1 and for low excitation numbers, i.e. eigen-

states of the total angular momentum
∣∣j = Nb

2
;m = −Nb

2
+ k
〉

with k ≪ Nb, the solution of

this equation is approximately given by

Jz ≈ ~

{
−Nb

2
+

J+J−
~2 (Nb + 1)

+
(J+J−)

2

~4 (Nb + 1)3

}

whence, at the lowest order in the excitation number,

(Nb

2
+

Jz
~

)
≈ J+J−

~2 (Nb + 1)
+

(J+J−)
2

~4 (Nb + 1)3
(A.7)

[J+, J−] ≈ −~
2Nb (A.8)

15



Injecting Eq.(A.7) into the previous form of the Hamiltonian we get

H̃ ≈ −~∆̃ca
†a + ~α

(
a + a†

)

−~∆̃r

(
J+J−

~2 (Nb + 1)
+

(J+J−)
2

~4 (Nb + 1)3

)

+~geff
√
N

(
a

J+

~
√Nb

+ a†
J−

~
√Nb

)

Moreover, from Eq.(A.8) we deduce that the operator b ≡ J
−

~
√Nb

is approximately bosonic

and therefore, the Hamiltonian can finally be put under the form

H̃ ≈ −~∆̃ca
†a + ~α

(
a + a†

)
− ~∆̃rb

†b− ~κ̄

2
b†b†bb+ ~geff

√
N
(
ab† + a†b

)

where κ̄ ≡ 2∆̃r/Nb.

Appendix B: Calculation of g
(2)
out

By definition, the second-order correlation function for the outgoing field is

g
(2)
out(t1, t2) =

〈
a†out (t1) a

†
out (t2) aout (t2) aout (t1)

〉

〈
a†out (t2) aout (t2)

〉〈
a†out (t1) aout (t1)

〉

Using the relations [14]

〈
a†out (t) aout (t)

〉
= 2γc

〈
a† (t) a (t)

〉

aout (t) =
√

2γca (t)− ain (t)

and keeping only non-zero terms (all terms like
〈
a†in....

〉
and 〈....ain〉 equal zero), one obtains

in the numerator four non-zero terms

〈
a†(t1)a

†(t2)ain(t2)a(t1)
〉

〈
a†(t1)a

†(t2)a(t2)a(t1)
〉

〈
a†(t1)a

†
in(t2)a(t2)a(t1)

〉

〈
a†(t1)a

†
in(t2)ain(t2)a(t1)

〉

Let us consider the first term. Using the standard commutation relations between a and

ain operators we have:
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〈
a†(t1)a

†(t2)ain(t2)a(t1)
〉
=
〈
a†(t1)a

†(t2)a(t1)ain(t2)
〉

+
〈
a†(t1)a

†(t2) [ain(t2), a(t1)]
〉

=
√

2γcθ(t1 − t2)
〈
a†(t1)a

†(t2) [a(t2), a(t1)]
〉

Here we used the relation

[X (t1) , ain (t2)] =
√

2γcθ (t1 − t2) [X, a]

where X is any system operator [14] and where θ (τ) is the Heaviside step-function (with

θ (0) = 1
2
).

Evaluating the other terms in the same way one finally obtains

g
(2)
out (t1, t2) =

〈
a† (tm) a

† (tM) a (tM ) a (tm)
〉

〈a† (t1) a (t1)〉 〈a† (t2) a (t2)〉
where tm ≡ min (t1, t2) and tM ≡ max (t1, t2).
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Figure III.1: a) Second-order correlation function at zero time g(2) (0) (numerical and analytical

plots coincide), as a function of the reduced detuning θ ≡
(
∆c −∆

(0)
c

)
/γe. In the neighbourhood

of the minimum (A) θA = 0, a strong antibunching region is observed (see inset); a strong bunching

area is obtained around the peak (B) θB = −4.9. b) Average number of pairs
〈
a†a†aa

〉
ss

=

〈n (n− 1)〉ss (thin line) and square of the average number of photons
〈
a†a
〉2
ss

= 〈n〉2ss in the steady

state (thick line). The position of the peak of the correlation function g(2) (0) is signaled by a

vertical line.
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Figure III.2: Temporal behaviour of g(2) (τ) for a) θB = −4.9 and b) θA = 0 . Note that we chose

a dimensionless “time”-variable τ × γe on the x-axis.
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