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The paraxial theory of spherical refracting surfaces, spherical lenses, and slabs with one birefringent
medium is investigated analytically: using walk-off effects in the paraxial domain, a number of relations
between objects and images are deduced, along with cardinal elements, in the case where the optic axis
is parallel to the optical axis. This method naturally shows that in some cases first-order astigmatism
appears. An argument based on the wavefront (and phase) transformation shows that any spherical
birefringent thin lens is stigmatic in the paraxial domain, because the first-order astigmatisms due to the
two surfaces of such a lens compensate each other. This is a priori not the case with thick birefringent
lenses—but two such cases are detailed. © 2008 Optical Society of America

OCIS codes: 080.0080, 080.2730, 260.1180, 260.1440.

1. Introduction

The theory of some birefringent lenses has been re-
cently addressed [1–5]. Some works, such as [4], men-
tion that such lenses are used in various systems:
common path profilometers [6,7], compact-disk read-
ers [8], image processors [9], intraocular prosthesis
[10], etc. Even in the case of a uniaxial crystal whose
optic axis is parallel or perpendicular to the geomet-
rical axis of the lens, the problem with a birefringent
medium arises with the refraction law, for which var-
ious expressions have been given [11–24] in the past
decades, often using Huygens’s construction or even-
tually Fermat’s principle—which both yield the re-
fracted rays directly. With Descartes’s construction,
for a ray propagating from an isotropic to an aniso-
tropic medium, there are two steps (see the caption of
Fig. 1, which explains an example of construction):
the first one gives the two refracted wave normals
(see, for example, [25,26]); the second gives the two
refracted rays, which generally are not parallel to
their normals. The splitting, due to the medium an-

isotropy, between a wave normal and—at least—one
of the corresponding rays, is called walk-off phenom-
enon. Several methods to find the directions of these
rays are available, and here it will be interesting to
proceed in a slightly different way than the latter
references do: we can use the well-known walk-off
property ([27], pp. 462–463) that each of these two
rays is perpendicular to the respective sheet of the
index surface, at the point corresponding to its wave
normal—if the birefringent medium is local [28] (i.e.,
concerning a dielectric, if the electric displacement at
any point P of the medium depends on the electric
field at P only).

In this paper, my goal is to give a deeper under-
standing of paraxial imaging with a birefringent sys-
tem: all the incident rays considered are near the line
��g�—called “optical axis” of the system. First, I will
discuss the effect of the walk-off on the refraction for
small incidences, and I will introduce an apparent
refractive index that is a curvature radius of a section
of the index surface. Then, I will deduce the optical
properties of an elementary system such as a plane or
spherical [29] refracting surface between an isotropic
and an anisotropic medium; and I will show that
when, for example, the latter is uniaxial and its optic
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axis parallel to ��g� normal to the surface, cardinal
points can be defined even for the extraordinary
beams. As a consequence, a number of relations be-
tween objects and images are the same as for a usual
spherical refracting surface—but its nodal point is no
more its center. Finally, I will apply these results to
the study of lenses, and stress a remarkable simpli-
fying fact: for a thin lens, the walk-off effects on the
front and the back side of the lens cancel each other,
even with a biaxial medium; but this is no more valid
for a slab or a thick lens, which may be fundamentally
astigmatic, i.e., show a first-order astigmatism, hence
even for an object point on ��g�, such as a cylindrical
isotropic lens—if the optic axis is not parallel to ��g�
[3–5]. Incidentally, I will indicate that for some uni-
axial slabs the extraordinary paraxial images always
coincide with the objects.

2. Kepler’s Law Generalized to an Anisotropic Medium

Kepler’s law is a first-order approximation of Snell’s
refraction law; the former is sufficient for the theory
of paraxial imaging. Let us recall that the refraction
law dealing with the wave normals is like the classi-
cal Snell’s refraction law, except that for an anisotro-
pic medium there are two refractive indices, one of
them at least depending on the direction of the wave
normal. But for the imaging theory we have to deter-
mine the directions of the refracted rays, which im-
plies taking the walk-off phenomenon into account.
For the remainder of this paper, the refractive indices
used will be relative to the input (or object space)
medium, assumed to be isotropic.

A. Introductory Example

Let us consider the case when the output medium is
uniaxial. The angle � between its optic axis ��o� and
the normal ��O� to the refracting surface (D) at the
incidence point O is assumed to be of first order, as
are the angles of incidence and refraction in Kepler’s
law (see Fig. 1); let us call no and ne its ordinary and
extraordinary (relative) refractive indices.

Consider an incident ray located in the principal
section plane ��O� at O, i.e., the plane parallel to ��o�
and containing ��O�; in this particular simple case—
due to the symmetry of the incident ray, of each sheet
of the index surface, and of ��O�, with respect to
��O�—each refracted ray lies in ��O�. Because the
ordinary ray behaves as if the medium was isotropic
(with refractive index no), in this subsection we study
only the case of the extraordinary rays. Let us call �
and �� the incidence and refraction angles. The rays
being normal to the index surface used for Des-
cartes’s construction, their directions depend on the
curvature of this surface.

First, the extraordinary ray is perpendicular to
the extraordinary sheet ��e� of the index surface at
the point K for � � 0 and � � 0 (see Fig. 1), but at the
point U on ��o� for � � � � 0. Let us recall that ��o�,
the ordinary sheet of the index surface, and ��e� are,
respectively, a sphere (of radius no) and an ellipsoid,
of center O and revolution axis ��o�. Then the first-
order approximations (versus �) of the algebraic

length l�0 of the small plane arc UK and of the refrac-
tion angle of the ray for � � 0 are, respectively,

l�0 � �no�, �0� � �nA
�1 � no

�1�l�0, (1)

because with � � 0 and ��o� fixed but � varying near
zero, from U to K the first-order angular variation of
the orientation of the perpendicular to ��e� resp. ��o�
is l�0�nA resp. �l�0�no� where nA � ne

2�no is the radius of
curvature of ��e� at U: due to the rotational symmetry
of ��e� around ��o�, the point U is an umbilic (i.e., its
principal curvatures are equal) [30]. Here, the impor-
tant property of nA is to give easily the first-order
angular variation of the orientation of the perpendic-
ular to ��e�; like no for the sphere ��o�.

For � � 0, the Descartes’s construction shows that
the refracted ray is normal to ��e� at L (see Fig. 1),
and the first-order approximation in � and in � gives
the algebraic length l� of the small plane arc KL:

l�� OH � OJ 	 � � �, �� � �0� 

l�

nA
. (2)

In this particular case, Kepler’s law is

nA�� � � 
 �nA � no�� (3)

(if the output medium is isotropic this reduces
evidently to the ordinary Kepler’s law, because
nA � no � ne � n; � is no more relevant). We can check
our Eq. (3): it is a total first-order expansion (in � and

Fig. 1. Explanation of Kepler’s law (hence for small �) by
Descartes’s construction with a uniaxial crystal and small �. Note
that what is called (D) in Figs. 1 and 2 may be the plane tangent
to the refracting surface at the incidence point, if this surface is
curved. Descartes’s construction consists in drawing, for the inci-
dent ray at O, its continuation (line with small dashes), which
intersects the input index surface at J; next to consider HJ (dashed
line), perpendicular to (D) and intersecting ��e� at L: the direction
of the extraordinary refracted wave normal [ray] is parallel to OL
[perpendicular to ��e� at L, as is for � � 0 (the arrow beginning at
K)].
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�) of Eqs. (7) of [5,24], and (3), (4), and (9) of [31]. In
some cases of refraction indeed (see, for example,
Subsections 3.A, 3.C, and 4.A.1) the radius of curva-
ture nA of a section of the index surface is very useful,
because it behaves like an apparent refractive index.
It is never between no and ne: nA � ne for a positive
uniaxial medium (e.g., quartz) because ne � no, which
corresponds to the case represented in Fig. 1; for
a negative medium (e.g., calcite) nA � ne because
ne � no. In both cases the derivation leading to Eqs.
(1)–(3) is valid, thanks to the algebraic nature of the
lengths and the angles involved.

B. More General Case

In more complicated cases (for example, when the
incident ray is not in the principal section plane, or �
is not small, or the output medium is biaxial), a vec-
torial analysis of the Descartes’s construction is use-
ful. As we will see, it leads to a simple first-order
expression for the variation r�, with respect to the
normal incidence case when O is kept constant, of the
unit vector r� parallel to the refracted ray.

For the case of a normally incident ray in an iso-
tropic input medium, consider one of the two re-
fracted rays (directed by rN�) in the output anisotropic
medium. It is related with the wave vector kOM in
this medium (with k � 2��� where � denotes the
wavelength in a vacuum); M is the point, determined
by the Descartes’s construction, of the sheet ���� of
the anisotropic index surface of center O [see Fig. 2(a)].

Now let us examine the effect of small tilts of
��O� and of the incident ray, when the incidence point
O and the crystallographic axes of the output
medium—hence also its index surface—remain fixed
[see Fig. 2(b)]: this problem prepares the study of a
refracted pencil of rays from an incident pencil on a
curved surface. In the output medium the small vari-
ation, with respect to kOM, of the wave vector is
kMQ, where Q is determined by Descartes’s construc-
tion [see Fig. 2(b)]. The transverse (i.e., normal to
OM) component of the global displacement MQ is the
result of independent contributions combining addi-
tively always in the first-order approximation.

Y �nN � 1�v, due to the small change v of the
unit normal v to (D) at O (turned from the input to
the output medium), nN � �OM� being the abscissa of
M, hence the refractive index associated to the re-
fracted wave normal considered in the case of the
normal incidence on (D) initially not tilted [case of the
incident horizontal ray on Fig. 2(b); see also its cap-
tion]; in Descartes’s construction for this incident
horizontal ray, the tilt of only (D) rotates the dashed
perpendicular to (D) around the point marked by
its abscissa 1 [see Fig. 2(b)] and distant from M by
nN � 1;

Y r, due to the small change of the unit vector r
oriented like the incident ray. Let us call (P) the
2 	 2 matrix of the orthogonal projection from the
plane ����, tangent to ���� at M, onto the plane normal
to OM. Because these planes are not normal, �P��1

exists and

MQ � �P��1��nN � 1�v 
 r�. (4)

Equation (4) leads to the first-order approximation of
the variation kMQ of the wave vector kn�u� (where u�

Fig. 2. Vectorial analysis of the Descartes’s construction. (a) Case
of a normally incident ray. (b) Effect of small tilts of ��O� and of the
incident ray. The index surfaces remain fixed, and the upper dashed
line normal to (D) shows Descartes’s construction when the incident
ray also remains fixed (horizontal on this figure) and only ��D�, ��O�	
is slightly tilted, leading to the term in v; the translation from the
upper to the lower dashed line is due to r, and shows the change in
Descartes’s construction when the incident ray is slightly rotated.
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is the wave normal associated in the medium to the
refractive index n� and to the refracted ray consid-
ered); we now have to express the variation r� of the
unit vector r� oriented like this refracted ray in the
anisotropic output medium—eventually nonlocal
(see Subsection 4.B.2). We know that, at first-order,
r� is parallel to the plane �P�� normal to r� at M; then
it suffices to consider the vectorial function f giving
the orthogonal projection of r� onto �P�� with the two
independent components of n�u� on ����, and finally
the 2 	 2 Jacobian matrix �C� of f at M only, to
find a formally simple expression in the first-order
approximation:

r� � �C�MQ. (5)

With a local output medium, for example, the re-
fracted ray considered is always normal to the index
surface ���� at Q, then �P�� and ���� coincide and (C)
depends on the curvature properties of ���� at M [32].
So with Eqs. (4) and (5), we have a generalization of
the simple case described by Eq. (3).

3. Paraxial Image Formation by a Refracting Surface
(D) Between an Isotropic and an Anisotropic Medium

A. Example: Case of a Spherical Refracting Surface With
a Birefringent Uniaxial Medium Whose Optic Axis is
Parallel to its Optical Axis

Here I will study the formation of the extraordinary
image only (the ordinary being the same as with an
isotropic medium of index no) by a spherical refract-
ing surface (D), whose optical axis is ��g�, vertex S,
and center C both on ��g� (see Fig. 3). Let us note that,
for an object point A located on ��g�, the polarization
of each extraordinary (ordinary) emerging ray is
rectilinear parallel (perpendicular) to its meridian
plane.

First, let us determine the paraxial image A� of an
object point A located on ��g�. At a point I of (D) near
S, the incidence angle of a ray (or its continuation)
coming from A is

� �
SI

AS



SI

SC
. (6)

The input medium is assumed isotropic, and the out-
put medium uniaxial with ��o� parallel to ��g�. Hence
the inclination of ��o� with respect to the normal ��I�
to (D) at I is (see Fig. 3):

� �
SI

SC
. (7)

The refracted ray (or its continuation) passes by A� on
��g�, because it is in the principal section plane con-
taining I and ��g�; its refraction angle is

�� �
SI

A�S



SI

SC
. (8)

Placed in Kepler’s law; [Eq. (3)], which is valid inde-
pendently of the sign of ne � no, these expressions
[Eqs. (6)–(8)] give the Descartes’s position relation
with origin at S:

nA

SA�
�

1

SA
�

no � 1

SC
. (9)

Whatever the sign of nA � no, the walk-off makes nA

appear instead of no in the left-hand side of Eq. (9);
and in the right-hand side, the presence of no instead
of nA despite the walk-off is due to its variation with
the inclination � of the optic axis ��o� on ��I�, which
depends on the incidence height SI according to
Eq. (7).

To know whether there is approximate stigmatism
for an object point B close to ��g� in the Gauss condi-
tions (see Fig. 3), I will consider the transfer matrix
for the rays crossing the thin system (D); one bit of
information given by this matrix is a relation involv-
ing the transverse components, i.e., normal to ��g�, r�

and r�� of the unit vectors r and r� parallel to the
incident and emerging rays.

But first, let us be reminded that on a usual spher-
ical refracting surface, i.e., for its principal planes,
the transfer matrix (T) allows to present [33] the
fundamental relations between any paraxial ray in-
cident on I and the corresponding ray emerging from
(D) under the form:


SI
r���� �T�
SI

r�
�,

with

�T� � � 1 0
�P�n 1�n, (10)

where n (P) denotes the relative refractive index
of the output isotropic medium [the power of (D)]

Fig. 3. Imaging of the transverse object AB by a spherical refract-
ing surface (D) with ��o� parallel to ��g�. As in Fig. 1, the optic axis
��o� is marked by a double arrow. The positive orientation for the
horizontal (vertical) algebraic lengths is to the right (to the top),
and for the angles it is counterclockwise. On this particular figure
A�B�, SC, ��, and � are negative, but the validity of the algebraic
relations [Eqs. (6)–(9) and (15)–(24)] is independent of this partic-
ular case.
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with respect to the input isotropic medium. In this
case

P �
n � 1

SC
, (11)

and the Descartes’s magnification relation with ori-
gin at S involves n: with B and its paraxial image B�
off the ��g� axis, A and A� their orthogonal projections
on ��g�, in the Gauss conditions, for the incident ray
(BI) and the associated emerging ray �IB�� we have,
using I � S (see Fig. 3) and according to Eq. (10),

A�B�

SA�
� r�� �

1
n r� �

1
n

AB

SA
, (12)

hence (in the limit where B tends to A and B� to
A�):

A�B�

AB
�

1
n

SA�

SA
. (13)

For (D) between isotropic and anisotropic media
with ��o� parallel to ��g�, it is clear ([5], Subsection
6.A) that

�T� �� 1 0
1 � no

nASC

1
nA
. (14)

With a local medium, the existence of such a simple
matrix comes from the fact that the point M of the
index surface is an umbilic: then (C) is a scalar ma-
trix. Comparing the two transfer matrices (T) above,
we deduce that for the extraordinary rays all the
paraxial properties of (D), including the existence of
the paraxial image B� of the object point B, are those
of a thin system of power �no � 1��SC with respect
to the input isotropic medium, with principal points
H � H� � S, between an input medium of index 1 and
an isotropic output medium of index nA (instead of no);
hence Descartes’ formula, with origin at S, for the
lateral magnification ml is

ml �
A�B�

AB
�

1
nA

SA�

SA
, (15)

and the ratio of the focal length of the image space,

f� � SF� �
nA

no � 1 SC, (16)

to the focal length of the object space,

f � SF � �
1

no � 1 SC (17)

is

f��f � �nA. (18)

A noticeable difference from the paraxial properties
of a usual spherical refracting surface is that its
merged first and second nodal points N � N�, on ��g�,
are not the center C of curvature of (D), but such that

SN �
nA � 1
no � 1 SC, (19)

hence the power of (D) may still be written as
�nA � 1��SN; consequently, C is no more its own
image C�, and

f� �
nA � 1
no � 1 SC �

�1
no � 1 SC � HN � HF � FN � FC,

(20)

f �
nA � 1
no � 1 SC �

nA

no � 1 SC � F�N � F�C, (21)

f 
 f� � SN � HN � H�N� � SC. (22)

Remarks

Y Using the absolute ordinary and extraordinary
indices No and Ne of the uniaxial medium, Eq. (9)
applied to A � C gives

SC� �
nA

no
SC � 
Ne

No
�2

SC. (23)

This result does not depend on the absolute refractive
index Ni of the isotropic input medium, physically
because each incident ray (or its continuation) pass-
ing by C is normal to the refracting surface (D).

Y The Newton’s position and magnification rela-
tions can be applied, using the results in Eqs. (16)
and (17).

Y The Descartes’s relations may be written with
the origin at N: we find

1

NA�
�

nA

NA
�

1 � nA

NS
�

1 � no

CS
, ml �

NA�

NA
. (24)

Y The Lagrange–Smith–Helmholtz relation can
be deduced from the determinant of (T), whose value
is 1�nA, and which is equal to the product of ml by the
angular magnification ma.

Y For a refracting system �D��, which is (D) re-
versed, the optical reciprocity (i.e., the reversibility of
light rays) allows to deduce the corresponding rela-
tions in a straightforward permuting A� and A (as
well as B� and B) in the relations for (D):
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1

SA�
�

nA

SA
�

1 � no

SC
�

1 � nA

SN
, ml � nA

SA�

SA
, (25)

nA

NA�
�

1

NA
�

nA � 1

NS
�

no � 1

CS
, ml �

NA�

NA
, (26)

mlma � nA. (27)

Y With no � 1, (D) and �D�� are convergent sys-
tems if C is in the uniaxial medium; in which case,
however, the merged nodal points N could be in the
isotropic medium if nA � 1, i.e., Ne

2�No � Ni � No.
The situation occurs only in the negative uniaxial
case, easily, for example, at 589 nm with calcite
(No � 1.658, Ne � 1.486), and ethanol �Ni � 1.361�, or
glycerin �Ni � 1.475�, or toluene �Ni � 1.496�, or an
immersion oil for microscopes �Ni � 1.517�.

Y With a positive medium such as sellaite
(MgF2:No � 1.378, Ne � 1.390) it is possible to obtain
an unusual case analogous to the precedent, where
C and N are on both sides of S, using heptane
�Ni � 1.388� for the isotropic medium: here the re-
quired conditions are No � Ni � Ne

2�No.
Y If ne � �no (a fine-tuning could be performed by

temperature or wavelength variations, for example),
then nA � 1 and for the paraxial extraordinary rays,
the properties of such a single refracting surface,
such as (D) or �D��, are those of a usual thin lens:
S � N, f � �f�. This is quite the case with calcite and
water.

Y For the ordinary paraxial image, nA has to be
replaced by no in Eqs. (9) and (14)–(21), and also N by
C in Eqs. (25) and (26), but we see by Eq. (17) that the
ordinary and extraordinary focal lengths of the object
space are identical. This is not true for the focal
lengths of the image space, so the ordinary and
extraordinary images of an object are generally
different.

B. Case of a Spherical Refracting Surface With a More
General Geometry for the Anisotropic Medium

Here I consider again an arbitrary anisotropic
medium—hence possibly uniaxial with ��o� not par-
allel to ��g�. For an incident ray carried by ��g�, the
unit vector rN� oriented like a refracted ray is not
parallel to ��g� a priori, because of the walk-off. For a
paraxial modification of the incident ray, the dis-
placement of the incidence point on (D) from S to I is
small compared to SC, and the variation r of r is
nearly equal to its new transverse component r�.
Transposing the fundamental results of Subsection
2.B, the direction change of the refracted ray consid-
ered is given by

r� � �C��P��1��ng � 1�v 
 r��, v � �SI�SC,
(28)

where ng denotes the relative refractive index of the
anisotropic medium for the corresponding wave nor-
mal parallel to ��g�.

For a paraxial incident pencil of rays from the ob-
ject point A on ��g�,

�ng � 1�v 
 r� ���
ng � 1

SC



1

ASSI. (29)

Even in the case when the anisotropic medium is
local and when the incident paraxial pencil is conic
and rotationally symmetric around ��g�, because of
the walk-off the refracted pencil is generally funda-
mentally astigmatic—and we already know that its
corresponding median ray is not on ��g� but is parallel
to rN�. Moreover, if no eigenvector of �C� is perpen-
dicular to ��g� and rN� at the same time, the shape of
this refracted pencil is similar to the shape obtained
when a conic and rotationally symmetric incident
pencil is sent obliquely on an aspheric surface sepa-
rating two isotropic media, such that at the incidence
point of its median ray no principal curvature direc-
tion of the surface be parallel to the incidence plane of
this ray. But the focal lines of the refracted pencil,
when �C� is symmetric, are parallel to the eigenvec-
tors of �C�—and they are mutually orthogonal; their
directions do not depend on SA, contrarily to their
distance to S. But for nonlocal media the refracted
pencil could present a higher-order form of astigma-
tism ([34], Section 3).

C. Case of a Plane Refracting Surface

The case of a plane refracting surface (D) can be
easily studied at this stage: one simply has to put
v � 0 in Eqs. (28) and (29). The conclusions obtained
above about the astigmatism of the paraxial refracted
pencil remain valid.

Let us consider the particular case where the aniso-
tropic medium is uniaxial, with a small angle � be-
tween the normal to (D) and the direction of ��o�. The
angular magnification produced by (D) is, because (D)
is plane, the derivative of �� with respect to �: its
paraxial value is approximately 1�nA (not 1�no) for
the extraordinary image (because of the walk-off).

Moreover, if ne � �no, for the extraordinary rays the
paraxial properties of this single surface are those of
an ordinary wedge (i.e., a prism of small angle), pro-
ducing in its principal section plane, cf. Eq. (3), the
deviation:

�� � � � ��no � 1��. (30)

Then, if � � 0, any object for this system merges with
its extraordinary paraxial image; but the ordinary
paraxial image is different, except for an object lo-
cated on (D).

4. Paraxial Properties of Anisotropic Spherical Lenses
in Isotropic Media

A spherical lens is formed by two spherical refracting
surfaces �D1� and �D2� of optical axis ��g�, vertices S1
and S2, and centers C1 and C2 all on ��g� (see Fig. 4).
The surrounding media are isotropic, and have the
same (relative) refractive index (put equal to 1) for

447 APPLIED OPTICS � Vol. 47, No. 3 � 20 January 2008



the input of the lens and for its output. �D1� and �D2�
are crossed by light in this order. The cardinal points
of �D1� or �D2� will be noted with the subscripts 1 or 2,
respectively.

A. Thin Lenses

For this subsection, I will assume the thin lens ap-
proximation; it permits one to consider that the ver-
tices S1 and S2 of �D1� and �D2� merge in the relations
between objects and images, and that the incidence
heights on �D1� and �D2� of corresponding rays are
equal: S1I1 � S2I2 � SI. Paraxial properties of thin
lenses are entirely determined by the position of one
of their focal points F� or F.

1. Example: Spherical Lens Made of a Uniaxial
Medium Whose Optic Axis is Parallel to its Optical
Axis
Here again, we will study the formation of the ex-
traordinary image only (the ordinary being the same
as with an isotropic medium of index no). In this case
we just have to write, for �D1� and �D2�, the relations
deduced from Subsection 3.A, and to combine them.
As a consequence, the terms involving the position of
the intermediate image formed by �D1� cancel (be-
cause S1 � S2 � S); hence we find the classical lens
equation, involving its power P (with respect to the
input isotropic medium), which is the sum of the
powers of �D1� and �D2�:

P �
1

SF�
� �

1

SF
� �nA � 1�
 1

S1N1
�

1

S2N2
�

� �no � 1�
 1

S1C1
�

1

S2C2
�, (31)

[which agrees with Eq. (60) of [5]].

Important Remarks

Y The last expression of P is not evident in terms
of rays, but in terms of phase transformation in
Gauss conditions: one immediately finds it if we con-
sider that light crossing the thin lens, of local thick-
ness e at the distance SI from its optical axis ��g�,
undergoes an optical path variation �no � 1�e, which
transforms a spherical incident wave into an emerg-

ing one [35] because

e � S1S2 � 
 1

S1C1
�

1

S2C2
�SI2

2 . (32)

Note that, because the extraordinary wave normals
in Gauss conditions are approximately parallel to the
optic axis inside the lens, the refractive index for
these waves does indeed appear, rather than nA, in
the calculation of the phase difference due to the cross-
ing of the lens; and this index is approximately no.

Y For the ordinary rays, the power of the lens is
also given by the result of Eq. (31). Hence the paraxial
properties of the ordinary and extraordinary rays
with such a lens are identical; the paraxial ordinary
and extraordinary images of any paraxial object
merge (and from this point of view the lens is equiv-
alent to a usual, i.e., isotropic, thin lens). But, out of
the paraxial domain, the aberrations of these images
differ.

2. Case of a Spherical Lens With a More General
Geometry for the Anisotropic Medium
I consider now a thin lens formed by an arbitrary
anisotropic medium (as in Subsection 3.A), and I will
prove that, separately for each of the two images of an
object, its paraxial properties are also those of a usual
thin lens (as in Subsection 4.A.1).

Let us call ng one of its two refractive indices for a
wave normal parallel to its optical axis ��g�. Then the
argument in the first important remark just above
(concerning the transformation of spherical waves)
still applies—replacing no by ng—and we find the
power of the lens:

P �
1

SF�
� �

1

SF
� �ng � 1�
 1

SC1
�

1

SC2
�. (33)

The simplicity of this derivation is astonishing,
compared to the complexity of the walk-off phenom-
ena inside the lens and of the Kepler’s law that de-
scribe them, when the lens is made of a biaxial
medium or of fluorite (CaF2: an interesting example
of a nonlocal medium; see Subsection 4.B.2). Let us
look directly at why these complications concerning
the rays do not primarily affect the paraxial pencils
emerging from such a thin lens.

For �D1�, crossed by the light propagating from the
isotropic input medium to the anisotropic medium,
transposing the relation (28) we get

r� � �C��P��1��ng � 1�v1 
 r��,

with

v1 � �S1I1�S1C1, (34)

where r� is the unit vector oriented like the refracted
ray considered inside the lens. But for �D2�, the light
propagates from the anisotropic to the isotropic sur-

Fig. 4. Transmission through a thick lens formed by two spher-
ical refracting surfaces �D1� and �D2� of optical axis ��g�, vertices S1

and S2 and centers C1 and C2; and construction of a paraxial image
A�B� using the cardinal points H, H�, F, and F� when ��o� is parallel
to ��g�.
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rounding medium; hence Eq. (34) must be inverted,
v1 must be replaced by

v2 � 
S2I2�S2C2, (35)

and �r�, r�� by (�r�, �r��) where r�� is the trans-
verse component of r�, the unit vector oriented like
the emerging ray considered at the output of the lens,
�r� and �r� being turned like v2 (from the isotropic
output medium to the anisotropic medium),

�r�� � �P��C��1��r�� � �ng � 1�v2, (36)

hence

r�� � �ng � 1��v1 
 v2� 
 r�. (37)

Because the thickness of the lens is neglected for the
ray tracing, the effect of the transversal shift of the
refracted ray inside the lens vanishes, even in the pres-
ence of walk-off,

S1I1 � S2I2 � SI, (38)

(for a calcite lens the maximum value of the transverse
component of I1I2 is near 0.5 mm only for a local thick-
ness of 5 mm, and is reached when � � 42°; see, for
example, [31] and [27], pp. 541–542 and 546); but this
approximation is still better when there is a weaker
walk-off, as in Subsection 4.A.1. For such a thin lens,
between its principal planes, its transfer matrix is
deduced from Eqs. (34)–(38),

�T� � � 1 0
�P 1, (39)

and involves the power of the lens given above [Eq.
33] for one of the two transmitted waves.

The matrix (C) has disappeared in Eq. (37), hence
also in the expression of (T)—for the transmitted
wave considered—and in the paraxial properties of
the thin lens. Moreover, the fundamental (i.e., first-
order) astigmatisms due to the two surfaces of the
thin lens compensate each other. For the transmitted
wave considered, this thin lens has therefore the
same paraxial properties as a usual thin lens; but an
important difference with Subsection 4.A.1 is that the
two transfer matrices for the two transmitted waves
are generally not identical, therefore such a lens does
give two paraxial images of an object.

Remark

If the anisotropic medium is uniaxial with ��o� not
parallel to ��g�, the extraordinary (ordinary) image is
very bright with respect to the other if the paraxial
incident beam is polarized linearly in a direction ap-
proximately parallel (perpendicular) to the plane con-
taining ��o� and ��g�: this is probably the only
relevant reason to distinguish two cases when ��o� is
orthogonal to ��g�; compare to the cases B and C of

Sections 6 and 7 of [5]. In [5], we can see that the
expression (61) of the lens power of [5]—deduced
from its Eqs. (20)–(25) or (42)–disagrees with my
expression (33) derived in this subsection. The origin
of this discrepancy may lie in Eqs. (20) and (23) of [5],
whose derivation is not detailed.

B. Thick Lenses

The simplicity of the derivation of the wavefront
transformation by thin lenses, due to the fact that
S1I1 � S2I2, disappears for thick lenses. This is al-
ready true, even in Gauss conditions, with lenses
made of isotropic media, when the difference between
S1I1 and S2I2 cannot be neglected in view of the lens
thickness and the ray obliquity. With thick lenses
made of an anisotropic medium, the walk-off phe-
nomenon changes that obliquity and further compli-
cates the expression of S2I2–S1I1; but for several types
of birefringent thick lenses, we will be able to easily
derive the consequences of the walk-off on the parax-
ial properties.

1. First Example: Case of a Lens Made of a
Uniaxial Medium Whose Optic Axis is Parallel to
its Optical Axis
To start with, at that stage it is easy to study the
paraxial properties of a thick lens made of a birefrin-
gent uniaxial medium whose optic axis is parallel to
its optical axis ��g� (see Fig. 4). The rotational sym-
metry around ��g� leads, for the ordinary and the
extraordinary images separately, to approximate
stigmatism near ��g�: there is no first-order astigma-
tism. For the same reason as in Subsection 4.A.1, I
will study the formation of the extraordinary image
only. Here again, the paraxial influence of the walk-
off is entirely summarized in Descartes’s relations by
the replacement of no by nA, and of a curvature center
by a nodal point, for each surface of the lens (see
Subsection 3.A). Combining these relations for �D1�
and �D2�, and introducing S1S2, which is not ne-
glected, we find that the paraxial properties of such a
thick lens are yet entirely characterized by the posi-
tion of a few cardinal points on ��g�: the first and
second principal points H and H�, and the focal points
F and F�, such that f � HF and f� � H�F�. They are
given by classical formulas [36], which are adapted
here replacing n (the index of an isotropic lens) by nA,
and the curvature center C1 of �D1� by its nodal point
N1; idem for �D2�. We obtain

1
f� � �nA � 1�
 1

S1N1
�

1

S2N2



nA � 1
nA

S1S2

S1N1 S2N2
�

�
nA � 1

nA

nAN1N2 � S1S2

S1N1 S2N2

� �no � 1�
 1

S1C1
�

1

S2C2



no � 1
nA

S1S2

S1C1 S2C2
�� �

1
f ,

(40)
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HH�

f� �
�nA � 1�2

nA

S1S2 N1N2

S1N1 S2N2
�

�no � 1�2

nA

S1S2 N1N2

S1C1 S2C2
,

(41)

S1H
f� � �

nA � 1
nA

S1S2

S2N2
� �

no � 1
nA

S1S2

S2C2
, (42)

S2H�

f� � �
nA � 1

nA

S1S2

S1N1
� �

no � 1
nA

S1S2

S1C1
, (43)

(these results agree with Eqs. (39)–(41) of [5]). We
find also the Lagrange–Smith–Helmholtz relation, by
multiplication of the corresponding relations for �D1�
and �D2�,

mlma � �1�nA�nA � 1, (44)

hence the first and second nodal points N and N� of
the thick lens are at H and H�, respectively.

Knowing the position of these cardinal points for
the extraordinary beams, it becomes possible to use
all the classical relations between objects and images.
For the ordinary paraxial beams, the cardinal points
are given by equations analogous to Eqs. (40)–(43),
but where nA has to be replaced by no, N1 by C1, and
N2 by C2, we see that the distances between the or-
dinary and extraordinary corresponding cardinal el-
ements are of first order in S1S2, hence are negligible
if S1S2 is negligible with respect to S1C1 and S2C2
(thin lens approximation).

2. Second Example: Case of a Fluorite Lens Whose
Optical Axis has the Direction [1 1 1]
Recently, an unusual form of birefringence has been
observed in fluorite and crystals of the same class,
due to nonlocality (i.e., spatial dispersion) [37,38].
The semiconductor industry may some day use fluo-
rite lenses in the photolithography objectives, which
work in vacuum ultraviolet, because fluorite is the
best material among the few transparent media in
this spectral range. To reduce the aberrations due to
this birefringence, which cannot be neglected when
using the excimer laser line at 157 nm, it has been
proposed to combine lenses whose optical axes ��g�
are parallel to the �1 1 1� direction of the conventional
cubic cell (C) of this class of crystals.

For such media, we actually know that the walk-off
is more difficult to study than with conventional bi-
refringent crystals, because the rays are no more per-
pendicular to the index surface (�). This authorizes
the absence, recently reported [28], of internal conical
refraction associated to the conical points of (�), all
located on the four optic axes parallel to the diagonals
of (C). We must note that there are three additional
optic axes for these crystals, parallel to the edges of
(C). I have recently shown [34] that when the angle
between a wave vector and an optic axis is of first
order, the walk-off angle � is of first order near the

latter optic axes, and, surprisingly, of second order
near the former.

This property allows to consider other parameters
(the thicknesses of the lenses) to reduce the aberra-
tions due to the birefringence of thick fluorite lenses
in objectives having ��g� parallel to the �1 1 1� direc-
tion. But in order to use such lenses the first question
is “What are their paraxial properties?” The answer
is very simple. Indeed, because the walk-off is of sec-
ond order here, it does not influence the paraxial
properties. Moreover, the refractive index variation
as a function of the propagation direction is of first
order in Gauss conditions, so its effect on the direc-
tion of the emerging rays is of second order, and does
not affect the paraxial properties; finally, in this sit-
uation, the double refraction is also negligible in
Gauss conditions, because ��g� is parallel to an optic
axis. Hence the paraxial properties of that thick lens
are identical to the properties of a usual one, of re-
fractive index n�1 1 1�, and there is no fundamental
astigmatism.

But when ��g� is parallel to an optic axis of direc-
tion �1 0 0�, for the paraxial rays the effect of � on
S2I2–S1I1 cannot be neglected because it is of first
order and the lens is thick. Moreover, even for an
object point on ��g�, there is no approximate stigma-
tism because the azimuthal dependence of � produces
a higher order form of astigmatism (see [34], Sec-
tion 3).

3. More General Case
In a more general case than in Subsections 4.B.1 and
4.B.2, we know that even in Gauss conditions a fun-
damental astigmatism appears with each refraction
on a surface, because of the walk-off (Subsection 3.B).
Then, S2I2–S1I1 being not negligible in a thick lens,
there is a priori no more systematic compensation of
the astigmatisms due to the refractions on its two
surfaces (as in Subsection 4.A.2); it has been theoret-
ically predicted [3] and experimentally verified (see
[4] and its Fig. 5) that the global first-order astigma-
tism of a uniaxial thick lens, for the extraordinary
image, increases in proportion to S1S2. Moreover,
proportionally to this thickness of the lens also, for an
incident ray carried by ��g�, the walk-off generally
produces a sensible transversal shift of the emerging
ray. In addition, for one incident beam, the double
refraction gives two emerging beams. And if the thick
lens was biaxial, with one optic axis near ��g�, the
internal conical refraction associated to this axis
would produce a nonconventional aberration in pro-
portion to S1S2.

C. Limit Case: A Slab

The case of a slab can be considered as the limit of a
thick lens with vanishing curvatures of its surfaces.
For a slab made of a uniaxial medium of thickness e,
I consider again the extraordinary rays only; if the
optic axis is not perpendicular to the slab, there is a
fundamental astigmatism proportional to e [39].

When the curvatures of the parallel surfaces of the
slab are null, and the optic axis ��o� is parallel to the
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normal ��� to the slab, the relations between objects
and images for the two surfaces are easy to combine;
the result is that the paraxial image is shifted longi-
tudinally, with respect to the object, by a length,

AA� � e
1 �
1
nA

�, (45)

parallel to ��� and in the sense of the propagation of
light. Once more, the walk-off makes that nA appears
instead of no in Eq. (45); hence the position of the
paraxial ordinary image differs from the position of
the extraordinary. In addition, their spherical aber-
rations are different. Moreover, if ne � �no, any object
for this slab coincides with its extraordinary paraxial
image; but the algebraic distance between the ordi-
nary and the extraordinary images of an object point
is e�no

�1 � nA
�1�.

When the angle � between ��� and ��o� is small, the
approximate stigmatism is preserved. But [according
to the walk-off angle given by Eq. (3) for � � 0] the
position of the extraordinary image is classically
shifted transversally also, in a direction of the prin-
cipal section plane parallel to ��o� and ���, by length
e�1 � �no�nA��� independent of the surrounding me-
dium. And if ne � �no, the longitudinal shift vanishes,
the paraxial imaging is the same with a pair of iden-
tical usual wedges placed head to foot and distant of e.

With slabs made of an anisotropic medium with no
optic axis quasi-parallel to ���, a fundamental astig-
matism appears because of the walk-off. This fact has
been well-known for a long time, because it limits the
performances of the interferential microscopy system
of Lebedeff [40].

5. Conclusion

Because the refracted rays are directly given by
Huygens’s construction, the concept of walk-off is not
essential when investigating refraction; but it is in-
teresting when the distinction between rays and
wave normals is relevant. This is the case for a clear
understanding of the paraxial properties of thin
spherical lenses made of an arbitrary anisotropic me-
dium, even with fluorite for which some usual bire-
fringence properties are no more valid.

That finding has encouraged us to scan the rela-
tions between objects and images, and to interpret
the curvature radius of the umbilic of the extraordi-
nary sheet ��e� of a uniaxial index surface as an ap-
parent index nA, in order to express these relations
easily—when the angle between ��o� and ��g� is
small—and to point out the fact that for a spherical
refracting surface (with a uniaxial medium) its center
is no more its nodal point even if ��o� is parallel to
��g�. Moreover, and again if ��o� is parallel to ��g�, the
ordinary and extraordinary images given by a slab
are different, because of the walk-off. We have also
seen that, because of the walk-off, a fundamental
astigmatism may appear for a refracted pencil, which
may limit the interest of thick birefringent systems;

but in a thin lens the fundamental astigmatisms as-
sociated to its two surfaces compensate each other.

The author thanks Pierre Chavel for his comments.

References and Notes
1. M. C. Simon, “Ray tracing formulas for monoaxial optical com-

ponents,” Appl. Opt. 22, 354–360 (1983).
2. M. C. Simon and R. M. Echarri, “Ray tracing formulas for

monoaxial optical components: vectorial formulation,” Appl.
Opt. 25, 1935–1939 (1986).

3. H. Shimomura, H. Kikuta, and K. Iwata, “First-order aberra-
tion of a double focus lens made of a uniaxial crystal,” J. Opt.
Soc. Am. A 9, 814–819 (1992).

4. J. P. Lesso, A. J. Duncan, W. Sibbett, and M. J. Padgett,
“Aberrations introduced by a lens made from a birefringent
material,” Appl. Opt. 39, 592–598 (2000).

5. M. Avendaño-Alejo and M. Rosete-Aguilar, “Paraxial theory
for birefringent lenses,” J. Opt. Soc. Am. A 22, 881–891 (2005).

6. M. J. Downs, W. H. McGivern, and H. J. Ferguson, “Optical
system for measuring the profiles of super smooth surfaces,”
Precis. Eng. 7, 211–215 (1985).

7. C. Chou, J. Shyu, Y. Huang, and C. Yuan, “Common-path
optical heterodyne profilometer: a configuration,” Appl. Opt.
37, 4137–4142 (1998).

8. K. Kinnstatter, M. Ojima, and S. Yonezawa, “Amplitude de-
tection for focus error in optical disks using a birefringent
lens,” Appl. Opt. 29, 4408–4413 (1990).

9. J. A. Ghosh and A. K. Chakraborty, “High frequency enhance-
ment using a birefringent lens,” Opt. Commun. 40, 329–331
(1982).

10. W. Fiala, “Multifocal intraocular lenses fabricated from media
exhibiting tuned birefringence,” Optom. Vision Sci. 69, 329–
332 (1992).

11. O. N. Stavroudis, “Ray tracing formulas for uniaxial crystals,”
J. Opt. Soc. Am. 52, 187–191 (1962).

12. Q.-T. Liang, “Simple ray tracing formulas for uniaxial optical
crystals,” Appl. Opt. 29, 1008–1010 (1990).

13. J. Lekner, “Reflection and refraction by uniaxial crystals,” J.
Phys. Condens. Matter 3, 6122–6133 (1991).

14. W. Q. Zhang, “General ray-tracing formulas for crystals,” Appl.
Opt. 31, 7328–7331 (1992).

15. Z. Shao and C. Yi, “Behavior of extraordinary rays in uniaxial
crystals,” Appl. Opt. 33, 1209–1212 (1994).

16. Z. Shao, “Refractive indices for extraordinary waves in uniax-
ial crystals,” Phys. Rev. E 52, 1043–1048 (1995).

17. E. Cojocaru, “Direction cosines and vectorial relations for
extraordinary-wave propagation in uniaxial media,” Appl.
Opt. 36, 302–306 (1997).

18. E. Cojocaru, “Explicit relations for the extraordinary-ray tra-
jectory at the back of a rotating uniaxial birefringent plate,”
Appl. Opt. 36, 8886–8888 (1997).

19. G. Beyerle and I. S. McDermid, “Ray-tracing formulas for re-
fraction and internal reflection in uniaxial crystal,” Appl. Opt.
37, 7947–7953 (1998).

20. E. Cojocaru, “Characteristics of ray traces at the back of biaxial
crystals at normal incidence,” Appl. Opt. 38, 4004–4010
(1999).

21. M. Avendaño-Alejo, O. Stavroudis, and A. R. Boyain,
“Huygens’ principle and rays in uniaxial anisotropic media I.
Crystal axis normal to refracting surface,” J. Opt. Soc. Am.
A 19, 1668–1673 (2002).

22. M. Avendaño-Alejo and O. Stavroudis, “Huygens’ principle and
rays in uniaxial anisotropic media II. Crystal axis with arbi-
trary orientation,” J. Opt. Soc. Am. A 19, 1674–1679 (2002).

23. M. C. Simon and K. V. Gottschalk, “Optical path in birefrin-
gent media and Fermat’s principle,” Pure Appl. Opt. 7, 1403–
1410 (1998).

451 APPLIED OPTICS � Vol. 47, No. 3 � 20 January 2008



24. M. Avendaño-Alejo and M. Rosete-Aguilar, “Optical path dif-
ference in a plane-parallel uniaxial plate,” J. Opt. Soc. Am. A
23, 926–932 (2006).

25. G. Chartier, Manuel d’Optique (Hermès, 1997), pp. 240–244.
26. S. Huard, Polarisation de la Lumière (Masson, 1994), pp.

76–84.
27. G. Bruhat, Cours de Physique Générale—Optique (Masson,

1992).
28. L. Dettwiller, “Absence of internal conical refraction with the

spatially dispersive index surface of fluorine; discussion of the
orthogonality of the Poynting vector to the index surface,” Opt.
Express 14, 3339–3344 (2006).

29. But any refracting surface (D) intersecting ��g� at an umbilic
S—called the “vertex” of (D)—and having at S an osculating
sphere of center C on ��g� also, has the same paraxial optical
properties as a spherical refracting surface of center C and
vertex S.

30. In parametric form and with an x axis parallel to ��o�, the
equation of the ellipse (centered at the origin O) that is the
section of ��e� by the incidence plane (Fig. 1) is

x � no cos t, y � ne sin t,

hence the radius of curvature is

R �
�ẋ2 
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