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The numerical performance of a finite-difference modal method for the analysis of one-dimensional lamellar
gratings in a classical mounting is studied. The method is simple and relies on first-order finite difference in
the grating to solve the Maxwell differential equations. The finite-difference scheme incorporates three fea-
tures that accelerate the convergence performance of the method: (1) The discrete permittivity is interpolated
at the lamellar boundaries, (2) mesh points are located on the permittivity discontinuities, and (3) a nonuni-
form sampling with increased resolution is performed near the discontinuities. Although the performance
achieved with the present method remains inferior to that achieved with up-to-date grating theories such as
rigorous coupled-wave analysis with adaptive spatial resolution, it is found that the present method offers
rather good performance for metallic gratings operating in the visible and near-infrared regions of the spec-
trum, especially for TM polarization. © 2000 Optical Society of America [S0740-3232(00)00606-2]

OCIS codes: 050.2770, 050.1950, 050.1970.
1. INTRODUCTION
Many rigorous methods exist for analyzing the diffraction
by surface-relief gratings, and much work has been done
during recent years to improve and generalize rigorous
methods. The differential method1 was associated with
the R-matrix algorithm to improve its stability2 for highly
conductive metallic gratings, especially for TM polariza-
tion (magnetic field vector perpendicular to the grating
vector); the integral method3 was generalized to study dif-
fraction by echelles covered with dielectric layers.4 The
rigorous coupled-wave analysis5 (RCWA) was improved in
a similar manner,6 and recently its convergence for TM
polarization and conical mounts was substantially
improved.7,8 The method of coordinate transformation9

was extended10 to gratings with vertical facets. Finite-
difference (FD) methods11 for solving partial differential
equations are also widely used in electromagnetism for
solving Maxwell’s equations. The finite-difference time
domain (FDTD) method12 is one example used exten-
sively. FD or finite-element methods are not widely used
in grating theory13–16 but are often used to study the dif-
fraction by aperiodic objects of finite dimension17–19 be-
cause of their suitability for incorporating absorbing
boundary conditions to limit the computational domain.

This paper is devoted to a very simple method for the
analysis of one-dimensional (1D) lamellar gratings under
classical mounts. The method shares many features
with standard grating theories such as the differential
method and the RCWA but uses a FD approach to solve
Maxwell’s equations in the grating region. It is twofold.
First, by the application of a FD technique, the modes in-
side the grating region are computed as eigenvectors of a
propagation operator. Then to compute the diffraction
efficiencies, the boundary conditions at the grating inter-
0740-3232/2000/061033-10$15.00 ©
faces are matched by use of the method of moments.
Note that this approach differs strongly from standard
FD methods13–16,18 that do not require solution of any
eigenproblem but do require a two-dimensional (2D) mesh
for the discretization of a 1D grating. The present
method, in contrast, is time harmonic and uses a 1D mesh
for the discretization of 1D gratings. It is therefore simi-
lar to numerical techniques that are based on FD modal
approaches and used in waveguide theories.20–23

The FD modal method is described in Section 2 with
special attention devoted to the TM polarization case.
The TE polarization case is briefly reported. In Section 3
the convergence rate of the present method is studied for
metallic and dielectric lamellar gratings for TE and TM
polarizations. It is compared with that achieved by the
classical RCWA and by the enhanced version of the
RCWA recently reported.24 Limitations of the present
method for analyzing dielectric gratings are emphasized.
Section 4 contains several comments on the present
method. Section 5 concludes the paper.

2. FINITE-DIFFERENCE MODAL METHOD
Let us consider a 1D lamellar grating along the x axis
with a relative permittivity profile e(x); see Fig. 1. The z
axis is perpendicular to the grating boundaries. The dif-
fraction problem is invariant in the y direction. Mag-
netic effects are not considered in this paper, and the con-
stant m0 denotes the permeability of the periodic
structure. e0 is the permittivity of the vacuum. The
grating period is denoted by L, and the modulus K of the
grating vector is equal to 2p/L. An incident plane wave
of frequency v and wavelength l in the vacuum makes an
angle u with the z direction in a nonconical mounting.
2000 Optical Society of America
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We denote the modulus of the wave vector of the incident
wave by k0(k0 5 2p/l) in the vacuum. A temporal de-
pendence in e jvt of the wave is assumed. In the follow-
ing, the FD modal method is first described for TM polar-
ization. The TE polarization case is then briefly
outlined.

A. TM Polarization
The incident normalized magnetic field is given by

C inc 5 exp$2jk0n1@sin~u!x 1 cos~u!z#%. (1)

The Rayleigh expansions for the magnetic field in the in-
cident medium and in the substrate are given by

C1 5 C inc 1 (
i

Ri exp@2j~kxix 2 k1,ziz !#, (2)

C3 5 (
i

Ti exp$2j@kxix 1 k3,zi~z 2 h !#%, (3)

respectively. In Eqs. (2) and (3), Ri and Ti are the
backward- and forward-diffracted amplitudes, kxi is equal
to k0n1 sin u 2 iK, and kp,zi ( p 5 1 or 3) is defined by
kxi

2 1 kp,zi
2 5 np

2k0
2, with Re(kp,zi) 1 Im(kp,zi) . 0. The

magnetic field C(x) in the grating region satisfies the
Helmholtz equation

]2C

]z2 1 e
]

]x S 1

e

]C

]x D 1 k0
2eC 5 0. (4)

To solve this differential equation, we use a FD scheme in
the x direction and then calculate analytically the propa-
gation in the z direction. The first step in applying a FD
method is to select a discrete set of values of x (the dis-
crete points) inside one grating period, the xi’s, i
5 1,... N, represented with crosses in Fig. 2. The mag-
netic field becomes a function of the discrete index i and
can be noted as a vector C with N components, the C i’s in
Fig. 2. The FD expression for the first derivative along
the x direction is computed at the discrete locations xi8 .
The xi8’s are represented by circles in Fig. 2. An inter-
laced grid similar to the Yee’s space lattice25 used in
FDTD methods is thus considered. In its discretized
form, Eq. (4) is written as

]2C

]z2 1 EC 5 0, (5)

where

E 5 e1~D2e2
21D1 1 k0

2I!. (6)

Fig. 1. Parameter definition for the classical grating diffraction
problems considered in this paper.
In Eq. (6) the N 3 N matrix E is tridiagonal with nonnull
upper right and lower left coefficients, I is the identity
matrix, and e1 and e2 are two diagonal matrices that re-
sult from the relative permittivity profile. Because this
profile is piecewise constant, a naı̈ve discretization of the
relative permittivity by simply assigning to the e1 and e2
coefficients the values of the relative permittivity at the
discrete points is a poor representation along the bound-
aries inside the grating region. Instead, we use an inter-
polation scheme that locally averages the permittivity or
its inverse according to the following rules:

e1~i, i ! 5
1

^1/e~x !&@xi218 ;xi8#

, (7a)

e2~i, i ! 5 ^e~x !&@xi ;xi11# . (7b)

In Eqs. (7a) and (7b) the brackets indicate the intervals
over which the averaging has to be performed. The use
of this interpolation scheme has a drastic impact on the
convergence performance of the present method and is
justified in Appendix A. The differential operator D1 and
D2 are given by

D1 5 3
h1

21~1 !

h1
21~2 !

•

•

•

•

h1
21~N !

4
3 3

21 1

21 •

• •

• •

• •

21 1

a 21

4 , (8a)

D2 5 3
h2

21~1 !

h2
21~2 !

•

•

•

•

h2
21~N !

4
3 3

1 2a

21 1

• •

• •

• •

• 1

21 1

4 . (8b)
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Fig. 2. Grating period discretization.
D1 and D2 are calculated on the crosses and circles, re-
spectively, in Fig. 2 The coefficient a equal to
exp(2jk0n1L sin u) at the lower left and upper right in ma-
trix D1 and D2 comes from the pseudoperiodicity condi-
tion for the electromagnetic fields in the grating region:
C(x 1 L, z) 5 C(x, z)exp(2jk0n1L sin u). The vectors
h1 and h2 are defined by h1(i) 5 xi11 2 xi and h2(i)
5 xi8 2 xi218 .

The magnetic field C in the grating region is given by

C~z ! 5 (
m51

N

Wm$cm
1 exp~2lmz ! 1 cm

2 exp@lm~z 2 h !#%,

(9)

where Wm and lm are the vector of the eigenvector matrix
W and the positive square root of the eigenvalues of the
matrix E, respectively. The cm

1 and cm
2 coefficients, like

the Ri and Ti coefficients, are unknowns.
All the unknown coefficients have to be evaluated by

matching the tangential field components C and (1/e)
3 (]C/]z) at the grating interfaces, z 5 0 and z 5 h.
For this purpose, we first note that the fields in the inci-
dent medium and in the substrate are expressed in the
Rayleigh basis, whereas in the grating region, the field is
just known at some discrete locations, the mesh points
xi’s. A natural choice here would be to discretize the
electromagnetic field in the incident medium and that in
the substrate at the mesh points. We rather prefer (see
Section 4) to interpret the discrete C i’s values computed
at the xi’s points in the grating region as the coefficients
of the magnetic field expansion in a set of rectangle func-
tions. For this purpose, we define the function
recti(x), i 5 1,... N, as

recti~x ! 5 H 1 if xi8 , x , xi118

0 otherwise
. (10)

By matching the boundary conditions, we obtain at the
top interface z 5 0,

exp~2jk0n1 sin ux ! 1 (
i

Ri exp~2jkxix !

[ (
p51

N

(
m51

N

wm,p rectp ~x !@cm
1 1 cm

2 exp~2lmh !#, (11a)

2jk0 cos u

n1
exp~2jk0n1 sin ux ! 1 (

i

jk1,zi

e1
Ri exp~2jkxix !

[ (
p51

N

(
m51

N

lmvm,p rectp ~x !@2cm
1 1 cm

2 exp~2lmh !#,

(11b)

and at the substrate interface z 5 h,
(
i

Ti exp~2jkxix !

[ (
p51

N

(
m51

N

wm,p rectp~x !@cm
1 exp~2lmh ! 1 cm

2 #, (12a)

(
i

2jk3,zi

e3
Ti exp~2jkxix !

[ (
p51

N

(
m51

N

lmvm,p rectp~x !@2cm
1 exp~2lmh ! 1 cm

2 #.

(12b)

In Eqs. (11) and (12) the sign [ is used to specify the
equality between two functions of the variable x that are
expressed in different function expansions. wm,p is the
pth component of vector Wm and vm,p is the pth compo-
nent of vector Vm ,Vm 5 e1

21WmQ, with Q being a diago-
nal matrix with the diagonal element lm . Hereafter, an
equal number of Rayleigh orders and of point locations is
considered. Thus in Eqs. (11) and (12) the summation
over the index i runs from 2(N 2 1)/2 to (N 2 1)/2 for
odd N values or from 2N/2 to N/2 2 1 for even N values.
Equations (11) and (12) constitute a system of equations
in known function expansions with unknown expansion
coefficients Ri , Ti , cm

1 , and cm
2 . To solve this system, we

use the method of moments. In this method, a projection
basis is first chosen. Then both sides of the series-
expansion equations are projected on the projection basis.
Finally, the linear system of equations is solved with
standard numerical techniques. As the projection basis,
we chose the set of plane waves of the Rayleigh expan-
sion. This choice is commented on in Section 4. It is
easily found that recti(x) [ (m51

N pi,m exp(2jkxmx), with

pi,m 5 exp~ jkxmxi!$exp@ jkxm~xi8 2 xi!#

2 exp@ jkxm~xi218 2 xi!#%/~ jkxmL!. (13)

In a matrix format, Eqs. (11) and (12) can be written as

F d i,0

jd i,0k0 cos u/n1
G 1 F I

2jZ1
GR 5 FPW PWX

PV 2PVXG Fc1

c2G ,
(14)

F I
jZ2

GT 5 FPWX PW

PVX 2PVG Fc1

c2G , (15)

where X, Z1 , and Z3 are diagonal matrices with the diag-
onal elements exp(2lmh), k1,zi /e1 and k3,zi /e3 , respec-
tively. P is the matrix formed by the pi,m coefficients.

Equations (14) and (15) are solved numerically. One
may first analytically eliminate Ri and Ti , then solve the
resulting set of equations for the cm

1 and cm
2 coefficients,
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and, finally, substitute the cm
1 and cm

2 coefficients back
into Eqs. (14) and (15). The diffraction efficiencies are

DEri 5 RiRi* Re~k1.zi /k0n1 cos u!,

DEti 5 TiTi* Re~k3,zin1 /k0n3
2 cos u!.

The field inside the grating region can be computed at the
mesh points with Eq. (9).

B. TE Polarization
We briefly outline here the few modifications necessary to
implement the TE polarization case. Equations (1)–(3)
remain valid, but now, C represent the electric field.
Discretizing the Helmholtz equation (]2C)/(]z2)
1 (]2C)/(]x2) 1 k0

2eC 5 0 leads to

]2C

]z2 1 EC 5 0,

where E 5 D2D1 1 k0
2e3 . (16)

In Eq. (16), e3 is the diagonal matrix with diagonal coef-
ficients

e3~i,i ! 5 ^e~x !&@xi218 ;xi8# . (17)

For TE polarization, the tangential field components are
C and (]C)/(]z). Equations (14) and (15) become

F d i,0

jd i,0 k0n1 cos u G 1 F I
2jY1

GR 5 FPW PWX

PV 2PVXG Fc1

c2G ,
(18)

F I
jY2

GT 5 FPWX PW

PVX 2PVG Fc1

c2G , (19)

where Y1 and Y3 are diagonal matrices with the diagonal
elements k1,zi and k3,zi , respectively. V is the matrix
formed by the vectors Vm , Vm 5 WmQ. W, Q, and X are
as defined previously. The diffraction efficiencies are

DEri 5 RiRi* Re~k1,zi /k0n1 cos u!,

DEti 5 TiTi* Re~k3,zi /k0n1 cos u!.

3. NUMERICAL RESULTS
In this section the convergence performance of the
present method is studied for TM and TE polarizations.
For the sake of comparison, the convergence speed
achieved is systematically compared with that achieved
with the RCWA.26 Our RCWA implementation for TM
polarization is described in Refs. 7 and 8. As will be
shown, the relative performance with respect to the
RCWA strongly depends on the grating materials. Me-
tallic lamellar gratings operating in the visible and in the
infrared region of the spectrum are first considered in
Subsection 3.A. Dielectric gratings for which relatively
bad convergence performance are observed are then con-
sidered in Subsection 3.B. In all calculations, the num-
ber of retained Rayleigh orders is equal to the number N
of point locations.
A. Metallic Gratings
In general, with FD methods, the convergence perfor-
mance depends on the set of selected discrete points. We
first consider a uniform sampling and a metallic grating
on an aluminum substrate in a Littrow mounting for op-
eration with CO2 lasers. This example was previously
considered in the literature by several researchers7,8,23

concerned with the convergence performance of the
RCWA. The diffraction parameters are given in the cap-
tion of Fig. 3. Only the minus-first and zeroth reflected
orders are propagating. For a perfectly uniform discreti-
zation, Figs. 3(a) and 3(b) show the error (defined as the
computed diffraction efficiency minus the exact value) of
the zeroth order as a function of N for TM and TE polar-
izations, respectively. In these figures, pluses are ob-
tained with the present method and circles with the
RCWA. This convention is used throughout the paper.

Fig. 3. Uniform discretization: computational error for the re-
flected zeroth order of a metallic grating: (a) TM, (b) TE. The
values of the parameters are: u 5 30°, f 5 0.5, n1 5 n8 5 1,
n3 5 n 5 0.22 1 6.71i, and l 5 L 5 h 5 1.0 mm. The exact
value of the reflected zeroth order is 84.848% for TM and
73.428% for TE. Pluses, present method; circles, RCWA.
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Although perfectly regular grids are often preferred for
ease of programming, nonuniform discretizations with a
minute sampling in localized regions near sharp disconti-
nuities or edges is desirable to model the local field phe-
nomena accurately. For a given accuracy, nonuniform
discretizations result in reduced matrix sizes (see Chap-
ter 11 of Ref. 12 for FDTD methods or, in a more related
context, Ref. 22, for instance.

For the numerical results reported in this subsection,
the set of discrete points is generated as follows. First, a
discretization step hg 5 L/N8 is computed, with N8 being
an arbitrary number of discrete points. Then the follow-
ing step-by-step procedure, illustrated in Fig. 4, is per-
formed:

(a) A cross (circle) point is associated with every left
(right) profile-transition location; see Fig. 4(a).

(b) For each point of Fig. 4(a), 2P discrete points
( p 5 1,... P) are generated symmetrically around the
discontinuity. Figure 4(b) illustrates the case P 5 2.
Let us consider the left transition location, a similar op-
eration being performed for the right transition location.
The distance Dp between two successive crosses is
hg(P 1 1 2 p)2r, where r is a real number, typically,
0.5, 1, or 2. After the crosses are generated, circles are
placed equidistantly between them. Note that this dis-
cretization procedure results in increased resolution near
boundaries.

(c) The last step consists in generating a uniform sam-
pling in all ridge or groove intervals denoted by T in Fig.
4(c). Every T interval is discretized by a set of equidis-
tant discrete points with alternate crosses and circles.
The distance between two successive crosses or circles is
chosen to be as close as possible to the discretization step
hg 5 L/N8. We end up with Fig. 4(c). Note that this
discretization procedure results in N discrete crosses or
circles and that the value of N slightly differs from the
initial value N8. In the following, P is equal to 3.

We first apply this procedure to the metallic grating
previously considered for uniform discretization. Results
for the reflected zeroth-order diffraction efficiency are
shown in Tables 1 and 2 for TM and TE polarizations, re-
spectively. The third columns correspond to numerical
values computed with the nonuniform discretization, and
r 5 0.5. For the sake of comparison, the results obtained
with a uniform discretization in Fig. 3 are given in the
second columns and those obtained with the RCWA are in
the fourth columns. The values in the last columns are
taken from the second column of Table 1 in Ref. 24, where
an improved convergence rate is achieved with the RCWA
by adaptive spatial resolution. The comparison of the
numerical values in columns 2 and 3 shows that the non-
uniform discretization accelerates the convergence speed,
especially for small N values for both TE and TM polar-
ization. Moreover, by comparison of columns 3, 4, and 5,
we conclude that the numerical performance of the
present method for TM polarization is between those of
the RCWA and the RCWA with adaptive spatial resolu-
tion and is worse than that of the RCWA for TE polariza-
tion.

We now consider metal with larger conductivity. The
example is taken from Ref. 27, where the computation of
the near-field pattern with the RCWA was studied for TM
polarization and where the convergence performance of
the RCWA was tested for highly conductive metals. A
lamellar grating in a Littrow mount with only the zeroth
and minus-first orders propagating is considered for
n 5 n3 5 1 2 40i. The diffraction parameters are
given in the caption of Fig. 5. For these very specific val-
ues, a resonance effect that is related to the presence of a
leaky wave at the grating surface is observed for TM po-
larization. In general, the diffraction efficiencies quickly
vary near the resonance, and grating resonances are par-
ticularly suitable for studying the robustness of any nu-
merical methods.27 Figures 5(a) and 5(b) correspond to

Fig. 4. Step-by-step procedure for the generation of the discrete
sampling points. As in Fig. 2, crosses and circles correspond to
xi and xi8 point locations, respectively.

Table 1. Reflected Zero-Order Efficiencies for
Various Truncation Orders N and for the Grating

of Fig. 3 (TM Polarization)

N
Uniform
Sampling

Nonuniform
Sampling RCWA

From
Ref. 24

13 0.78284 0.83704 0.83485 0.84519
17 0.81855 0.84305 0.83838 0.84663
21 0.83300 0.84592 0.84211 0.84831
25 0.83980 0.84717 0.83960 0.84862
29 0.84339 0.84774 0.84241 0.84850
41 0.84712 0.84829 0.84425 0.84848
61 0.84825 0.84844 0.84579 0.84847
81 0.84844 0.84847 0.84677 0.84848

Table 2. Reflected Zero-Order Efficiencies for
Various Truncation Orders N and for the Grating

of Fig. 3 (TE Polarization)

N
Uniform
Sampling

Nonuniform
Sampling RCWA

From
Ref. 24

13 0.23815 0.44096 0.81979 0.72760
17 0.47834 0.59064 0.78196 0.73441
21 0.59588 0.65601 0.76227 0.73422
25 0.65193 0.68540 0.75181 0.73427
29 0.68109 0.70082 0.73857 0.73428
41 0.71425 0.71962 0.73857 0.73428
61 0.72711 0.72821 0.73561 0.73428
81 0.73063 0.73097 0.73485 0.73428
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TM and TE polarizations, respectively, and are obtained
for r 5 1. For this highly conductive case, the present
method achieves better convergence performance than
the RCWA for TE and for TM polarizations.

We have tested the FD method for several other diffrac-
tion problems by considering several metals, incident
wavelengths, fill factors, grating depths, and grating pe-
riods and also by considering multigroove profiles. The
results are not reported here for the sake of brevity, but
several observations are worth mentioning. In general,
situations for which the performance of the present
method compares favorably with the performance of the
RCWA correspond to highly conductive metals, especially
for TM polarization. As the metal conductivity is low-
ered, the RCWA becomes progressively superior. We

Fig. 5. Nonuniform discretization (r 5 1). Minus-first re-
flected order for the grating considered in Ref. 27. The values of
the parameters are u 5 arcsin(l/2/L), f 5 0.57, n1 5 n8 5 1,
n3 5 n 5 1 1 40i, l 5 1 mm, L 5 1.2361 mm, and h 5 0.4L.
(a) TM polarization, (b) TE polarization. Pulses, present
method; circles, RCWA.
also observed that for a given metal, the convergence rate
of the present method, relative to the RCWA, decreases as
larger and larger air grooves (typically larger than '2 or
3l) are considered. We also observed that the grating pe-
riod (for a fixed air-groove width) and the grating depth
have nearly no impact on the performance of the present
method.

B. Limitation: Dielectric Gratings
The above observations can be interpreted if one consid-
ers that the nearly-uniform discretization procedure pro-
vided by step (c) is not suited for sampling regions where,
for example, the electromagnetic field is slowly varying,
large air-groove regions. This limitation results in
slower convergence performance and in increased compu-
tational loads.22 This bad efficiency is especially strin-
gent when dielectric gratings with large periods and with
large grooves or ridges are considered. Figure 6 illus-
trates our purpose for a dielectric grating with a 2l-period
and with a '1.5l-large air groove illuminated under TM
polarization. It is clearly seen that the convergence per-
formance of the present method (r 5 0.5) compares very
badly with that of the RCWA.

Although a better performance can be reasonably ex-
pected for a more appropriate discretization, we believe
that the bad performance reported in Fig. 6 is intrinsic to
the FD method. Even with a refined discretization, the
performance of the present method is likely not to meet
the performance of the RCWA. In fact, it is conceivable
that a Fourier basis, especially with respect to low Fou-
rier harmonics, is much more appropriate than a sam-
pling on discrete point locations to represent slowly vary-
ing functions.

Fig. 6. TM polarization and nonuniform discretization (r
5 0.5). Computational error for the transmitted minus-first
order of a dielectric grating. The dashed curve represents the
deviation to the energy conservation obtained with the present
method. The values of the parameters are u 5 30°, f 5 0.234,
n1 5 n8 5 1, n3 5 1.5, n 5 2.3, l 5 1 mm, L 5 2 mm, and h
5 1 mm. The exact value for the diffraction efficiency is
51.062%. Pluses, present method; circles, RCWA.
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4. REMARKS
A. Convergence Performance and Discretization
The convergence performance of the present method is
highly improved by the use of the interpolation rules jus-
tified in Appendix A. With a majority rule that simply
consists in assigning to the coefficients of matrices e1 and
e2 the values of the permittivity at the discrete point lo-
cations @e1(i, i) 5 e(xi) or e2(i, i) 5 e(xi8)], an oscilla-
tory convergence with large oscillation amplitude is ob-
served.

Discretisizing at the boundaries as suggested by step
(a) in Subsection 3(A) is known to be advisable with FD
methods because it results in an accurate localization of
discontinuities. Perhaps, it is less well known that the
alternating discretization (one-half of the discontinuities
are located on the xi points, the other half on the xi8
points) proposed in step (a) results in better convergence
rates than the standard discretization approaches28 that
consists in locating all boundaries either with xi points or
with xi8 points. Step (b) results in increased resolution
near boundaries and accelerates the convergence speed,
especially for small N values and for metallic gratings:
see Tables 1 and 2, for instance. Step (c) consists in gen-
erating a discretization grid as uniform as possible. This
discretization procedure is not optimal; enhanced conver-
gence performances are likely to be achieved with refined
discretization relying on physical and mathematical con-
siderations; see Chapter 11 in Ref. 12. Such consider-
ations are out of the scope of this work.

B. Boundary Conditions
In Section 2 the method of moments is used for matching
the boundary conditions after the electromagnetic fields
in the grating region are expressed by an expansion com-
posed of rectangle functions centered at the discrete
points. A more natural choice consists in calculating the
electromagnetic fields in the incident and in the substrate
at the discrete xi points and then in matching the bound-
ary conditions at the discrete points. This natural and
simple approach was first considered, and nearly identi-
cal convergence rates were obtained.

However, when a stack of lamellar gratings with iden-
tical periods is considered or when a continuous-profile
grating (a blazed grating, for example) is sliced for com-
putational purposes, the natural approach is problemati-
cal. This is due to the fact that each slice requires a spe-
cific discrete set of xi points. This drawback does not
hold with the present method. Since the electromagnetic
field quantities in the substrate, in the incident medium,
and in all the slices are all expressed in the Rayleigh ba-
sis, standard procedures like the S- or R-matrix methods
may be applied.

C. Computational Effort: Sparsity
The present method is twofold. FD’s are first applied to
discretize Maxwell’s equations inside the grating region,
and a system of differential equations is obtained. Once
the eigenvalues and eigenvectors of this system are
found, the boundary conditions at the grating interfaces
are matched to compute the diffraction efficiencies. This
is achieved by solving a linear system of equations.
The numerical implementation is very similar to that
of the RCWA.25 Basically, except for the additional P
matrix involved when the boundary conditions at the
grating interfaces is solved with the method of moments,
the numerical complexities of the RCWA and the FD
modal method for solving the boundary conditions are
identical. The eigenproblem formulations, however, are
rather different. Whereas the RCWA requires solution of
a full matrix that has no symmetry in general, the Q ma-
trix of the FD modal approach is sparse. It is a tridiago-
nal matrix with nonzero upper right and lower left coeffi-
cients. Hence a significant enhancement in compu-
tational efficiency and a reduction in computer memory
requirement can be achieved by use of an appropriate ei-
genvalue software package.

D. Special Case of Lossless Metals
In practice, to access the ultimate performance of many
designs with metallic gratings operating in the visible or
near-infrared region of the spectrum, it is relevant to con-
sider absorption-free metals, i.e., metals with a purely
real negative permittivity. The RCWA method for TM
polarization fails in this case. The reason comes from the
fact that the inverse rule cannot be applied. More spe-
cifically, neither condition (a) nor condition (b) in theorem
3 of Ref. 29 is satisfied for a lossless metal with a purely
real negative permittivity. Figure 7 illustrates our pur-
pose. The same diffraction geometry as in Fig. 3 is con-
sidered, except that the metal refractive index is 6.7i
(n 5 n3 5 6.71i). Clearly, the present method shown
with pluses does not present this drawback.

E. Lossless Dielectric Gratings and Energy Conservation
Conservation of energy for a lossless grating stipulates
that the sum of all the diffraction efficiencies is one. As
opposed to the RCWA, for instance, the proposed method
does not automatically verify this conservation law.
Consequently, an energy balance criterion may be used to
access the accuracy of an individual diffraction efficiency.
In Fig. 6 the dashed curve represents the sum of all the

Fig. 7. Same as in Fig. 3(a) with an ideal lossless metal (n
5 n3 5 6.71i) and a nonuniform discretization (r 5 0.5).
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diffraction efficiencies minus one. It is noticeable that
this error is approximately ten times smaller than the er-
ror for the diffraction efficiency of the reflected minus-
first order. The same conclusion holds when considering
the relative error. We conclude that the energy balance
criterion cannot be reliably used to access the accuracy of
the computed diffracted orders.

5. CONCLUSION
We have presented a first-order finite-difference modal
method for the analysis of 1D lamellar gratings in a clas-
sical mounting. The FD scheme incorporates three fea-
tures that accelerate the convergence performance of the
method: (1) the discrete permittivity is interpolated at
the lamellar boundaries, (2) mesh points are located on
the permittivity discontinuities, and (3) a nonuniform
sampling with increased resolution is performed near the
discontinuities. The convergence performance of the
present method was compared with the RCWA, also
named the Fourier modal method. We found that the
present method is much inferior to the RCWA for dielec-
tric gratings. In contrast, for metallic gratings operating
in the near-infrared regions of the spectrum, the present
method compares favorably with the RCWA, especially
for TM polarization. In fact, our numerical results indi-
cate that the higher the conductivity, the better the con-
vergence of the present method with respect to the RCWA
one. They also indicate that the present method remains
inferior to the method recently proposed by Granet,24 at
least on the specific example considered. Note that the
concept of adaptive spatial resolution in Ref. 24 is very
similar to the nonuniform discretization we used in this
work to modelize the electromagnetic field near the per-
mittivity discontinuities accurately.

The primary motivation for this work was not to con-
tribute to the development of the electromagnetic theory
of gratings that can nowadays solve most of all standard
grating problems very efficiently, at least for the 1D case
considered here. This work was first motivated by the
electromagnetic analysis of aperiodic finite lamellar dif-
fractive components, such as Bragg waveguide mirrors,
grating couplers, or miniature diffractive beam-shaping
elements with finite apertures. For the analysis of these
aperiodic structures, FD or finite element methods are
well suited because they can efficiently incorporate ab-
sorbing boundaries to limit the computational space.
When comparing a simple first-order FD method with up-
to-date well established grating theories such as the
RCWA, surprisingly, we found that the FD approach of-
fers rather good performance for highly conducting grat-
ings and TM polarization.

The main conclusion of this work is that, although they
are not widely used in grating theory, FD methods may be
useful when highly conducting metallic gratings are con-
sidered. Faster convergence rates can be expected with
higher-order FD’s or with finite-element techniques.
This would, however, reduce the sparsity of the eigen ma-
trix. In contrast, FD techniques are widely used in wave-
guide theory, and for a long time they have been applied
successfully in the microwave region of the spectrum for
metallic guides. They are now applied in the visible for
dielectric waveguides. In the view of the results obtained
in this paper, this appears questionable.

APPENDIX A: INTERPOLATION AT A
BOUNDARY
This appendix provides a justification for the interpola-
tion rules of Eqs. (7a), (7b), and (17). Only the TM polar-
ization case is considered for the sake of conciseness. We
consider a planar interface that separates two media with
relative permittivities e1 and e2 ; see Fig. 8. In the two
homogeneous media, the electromagnetic fields can be ex-
panded in a plane-wave basis. We consider one of the
Fourier components of the spectrum and denote by q the z
component of its wave vector. In medium 1, the y com-
ponent of the magnetic field vector can be written as

C1~x, z ! 5 exp~2jqz !@a1 exp~2jrx ! 1 b1 exp~ jrx !#.
(A1)

Similarly, in medium 2, we have

C2~x, z ! 5 exp~2jqz !@a2 exp~2jr8x ! 1 b2 exp~ jr8x !#,

(A2)
with

r2 1 q2 5 e1k2, r82 1 q2 5 e2k2. (A3)

For C1 and C2 to be solutions of Maxwell’s equations, C
and (1/e)(]C/]x) have to be continuous at the interface.
Thus the complex amplitudes a1 , a2 , b1 , and b2 verify

a1 1 b1 5 a2 1 b2 ,
r

e1
~a1 2 b1! 5

r8

e2
~a2 2 b2!.

(A4)

The three Maxwell’s curl equations for TM waves are

jve0Ez 5 ]xC, (A5)

jve0eEx 5 2]zC, (A6)

jvm0C 5 ]xEz 2 ]zEx . (A7)

According to Eq. (A5), the z components of the electric
field in media 1 and 2 are

Ez1 5 2
r

ve0e1
exp~2jqz !@a1 exp~2jrx ! 2 b1 exp~ jrx !#,

(A8)

Ez2 5 2
r8

ve0e2
exp~2jqz !@a2 exp~2jr8x !

2 b2 exp~ jr8x !#, (A9)

respectively. Our objective is to determine the discrete
values of the relative permittivity to minimize discretiza-
tion errors. We proceed first with Eq. (A5). Its dis-
cretized version is

jve i
zEz,i 5

1

h1
~C i11 2 C i!, (A10)

where h1 5 xi11 2 xi and e i
z is the discrete value (at ab-

scissa xi8) of e(x). The upperscript z indicates that the
discretized permittivity is related to the z component of
the electric field. Clearly, in FD methods, the discrete
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functions differ from the exact solution; the difference
vanishes when the discretization step tends toward zero.
Consequently, in Eq. (A10), the discrete field quantities
Ez,i , C i11 , and C i differ from the exact values Ez2(xi8),
C2(xi11), and C1(xi). How to determine the value of e i

z

so that the discrete field quantities best approximate the
exact values? A reasonably good solution to that problem
is obtained by replacing in Eq. (A10) the discrete field
quantities by their exact values, then by expanding Eq.
(A10) in a power series of the discretization step, and fi-
nally by selecting the value of e i

z that nullifies the lower-
order term of the power series. Doing so, we obtain for
the power-series expansion

e i
z

r8

e2
~b2 2 a2!h1 5 ~b2 1 a2 2 b1 2 a1!

1 r8~1 2 f1!~b2 2 a2!

1 rf1~b1 2 a1!h 1 O~h1
2!, (A11)

where f1 is defined as in Fig. 8. Taking into account the
boundary conditions (A4), Eq. (A11) is satisfied up to the
first order in h1 , provided that e i

z is the average relative
permittivity

e i
z 5 f1e1 1 ~1 2 f1!e2 . (A12)

Equation (A12) holds for any value of r (or q) up to the
first power of h1 .

We now proceed with the interpolation of the discrete
value of the relative permittivity related to the x compo-
nent of the electric field. From Eqs. (A6) and (A7) and
noting that ]zC 5 2jqC, we first obtain e(k2C
1 jve0]xEz) 5 q2C and, after discretization,

e i
xFk2C i 1

jve0

h2
~Ez,i 2 Ez,i21!G 5 q2C i , (A13)

where e i
x is the discrete value of e at the discrete point xi

and h2 5 xi8 2 xi218 . Incorporating terms up to the or-
der 2, we obtain

e1
x H jF r

e1
~a1 2 b1! 2

r8

e2
~a2 2 b2!G 1 h2Fk2~a2 1 b2!

2
r2

e1
~a1 1 b1!f2 2

r82

e2
~a2 1 b2!~1 2 f2!G J

5 q2~a2 1 b2!h2 1 O~h2
2!. (A14)

The zeroth-order term in the left-hand side of Eq. (A14) is
null; see Eq. (A4). Expressing r and r8 as a function of q

Fig. 8. Notation for the discretization at an interface between
two media with relative permittivities e1 and e2 . The interface
between the media is perpendicular to the x-grid coordinate.
and k according to Eq. (2) and using the continuity of C,
Eq. (A14) reduces to the weighted average of the inverse
of the relative permittivities

e i
x 5

1

f2/e1 1 ~1 2 f2!/e2
, (A15)

which holds for any value of q up to the first power of h2 .
The tensorial interpolation rules of Eqs. (A12) and

(A15) hold for any value of the z component of the wave
vector. Since any field distribution can be expanded in a
plane-wave basis, it is concluded that they allow for the
field to satisfy locally the boundary conditions at an inter-
face up to the first order of the discretization step.

Equations (A12) and (A15) have a simple interpreta-
tion: For electric field components parallel to the inter-
face, the relative permittivity has to be interpolated with
a standard weighted average, and for electric field compo-
nents normal to the interface, with an inverse weighted
average. Although not mentioned above for the sake of
clarity, a similar interpolation scheme holds for magnetic
material interfaces. Finally, note that, although much
effort has been carried out to take into account bound-
aries in FD methods accurately, the tensorial interpola-
tion rules of Eqs. (A12) and (A15) are not widely used.
For instance, in FDTD methods, related but different av-
erage rules exist for the permittivity and the permeability
when a staircase approximations of curved interfaces are
generated on uniform grids. In FD modal approaches
used for waveguide computations,21–23 more complex FD
expressions obtained from the second-order derivative
(Helmholtz) Maxwell’s equations have been studied.30–32

In contrast, the interpolation rules of Eqs. (A12) and
(A15) are simple to implement and verify the first-order
derivative curl equations. They were previously used for
photonic bandgap computation in Ref. 33, where their use
was briefly and weakly justified through effective medium
theory considerations. We believe that the justification
provided above is more relevant. Moreover, the numeri-
cal results obtained by the authors of Ref. 33 for multidi-
mensional periodic structures indicate that the present
interpolation rules may be efficiently used for crossed-
grating diffraction problems.
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Mathématique in Orsay and to Maria Huhtala of the
Helsinki University of Technology in Finland. This re-
search was supported in part by the Program Micro-
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Opt. 5, 65–77 (1974).

2. F. Montiel and M. Nevière, ‘‘Differential theory of gratings:
extension to deep gratings of arbitrary profile and permit-



1042 J. Opt. Soc. Am. A/Vol. 17, No. 6 /June 2000 P. Lalanne and J.-P. Hugonin
tivity through the R-matrix propagation algorithm,’’ J. Opt.
Soc. Am. A 11, 3241–3250 (1994).

3. D. Maystre, ‘‘Integral method,’’ in Electromagnetic Theory
of Gratings, R. Petit ed. (Springer-Verlag, Berlin, 1980),
Chap. 3.

4. E. Popov, B. Bozhkov, D. Maystre, and J. Hoose, ‘‘Integral
method for echelles covered with lossless or absorbing thin
dielectric layers,’’ Appl. Opt. 38, 47–55 (1999).

5. T. K. Gaylord and M. G. Moharam, ‘‘Analysis and applica-
tion of optical diffraction by gratings,’’ Proc. IEEE 73, 894–
936 (1985).

6. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K.
Gaylord, ‘‘Stable implementation of the rigorous coupled-
wave analysis for surface-relief gratings: enhanced trans-
mittance matrix approach,’’ J. Opt. Soc. Am. A 12, 1077–
1086 (1995).

7. Ph. Lalanne and G. M. Morris, ‘‘Highly improved conver-
gence of the coupled-wave method for TM polarization,’’ J.
Opt. Soc. Am. A 13, 779–784 (1996).

8. G. Granet and B. Guizal, ‘‘Efficient implementation of the
coupled-wave method for metallic lamellar gratings in TM
polarization,’’ J. Opt. Soc. Am. A 13, 1019–1023 (1996).

9. J. Chandezon, M. T. Dupuis, G. Cornet, and D. Maystre,
‘‘Multicoated gratings: a differential formalism applicable
in the entire optical region,’’ J. Opt. Soc. Am. 72, 839–846
(1982).

10. L. Li and J. Chandezon, ‘‘Improvement of the coordinate
transformation method for surface-relief gratings with
sharp edges,’’ J. Opt. Soc. Am. A 13, 2247–2255 (1996).

11. G. D. Smith, Numerical Solution of Partial Differential
Equations: Finite Difference Methods (Oxford U. Press,
Oxford, UK, 1985).

12. A. Taflove, Computational Electrodynamics: The Finite-
Difference Time-Domain Method (Artech House, Boston,
Mass., 1995).

13. S. D. Gedney, J. F. Lee, and R. Mittra, ‘‘A combined FEM/
MoM to analyze the plane wave diffraction by arbitrary
gratings,’’ IEEE Trans. Microwave Theory Tech. 40, 363–
370 (1992).

14. T. Delort and D. Maystre, ‘‘Finite-element method for grat-
ings,’’ J. Opt. Soc. Am. A 10, 2592–2601 (1993).

15. H. Ichikawa, ‘‘Electromagnetic analysis of diffraction grat-
ings by the finite-difference time-domain method,’’ J. Opt.
Soc. Am. A 15, 152–157 (1998).

16. M. K. Moaveni, ‘‘Plane-wave diffraction by dielectric grat-
ings, finite difference formulation,’’ IEEE Trans. Antennas
Propag. 37, 1026–1031 (1989).

17. B. Lichtenberg and N. C. Gallagher, ‘‘Numerical modeling
of diffractive devices using the finite element method,’’ Opt.
Eng. (Bellingham) 33, 3518–3526 (1994).

18. K. Hirayama, E. N. Glytsis, T. K. Gaylord, and D. W. Wil-
son, ‘‘Rigorous electromagnetic analysis of diffractive cylin-
drical lenses,’’ J. Opt. Soc. Am. A 13, 2219–2231 (1996).
19. D. W. Prather and S. Shi, ‘‘Formulation and application of
the finite-difference time-domain method for the analysis of
axially symmetric diffractive optical elements,’’ J. Opt. Soc.
Am. A 16, 1131–1142 (1999).

20. R. Pregla and W. Pasher, ‘‘The method of lines,’’ in Numeri-
cal Techniques for Microwave and Millimeter Wave Passive
Structures, T. Itoh, ed. (Wiley, New York, 1989), pp. 381–
446.

21. Q. H. Liu and W. C. Chew, ‘‘Analysis of discontinuities in
planar dielectric waveguides: an eigenmode propagation
method,’’ IEEE Trans. Microwave Theory Tech. 39, 422–
430 (1991).

22. J. Gerdes, B. Lunitz, D. Benish, and R. Pregla, ‘‘Analysis of
slab waveguide discontinuities including radiation and ab-
sorption effects,’’ Electron. Lett. 28, 1013–1015 (1992).

23. C. M. Kim and R. V. Ramaswamy, ‘‘Modeling of graded-
index channel waveguides using nonuniform finite differ-
ence method,’’ J. Lightwave Technol. 7, 1581–1589 (1989).

24. G. Granet, ‘‘Reformulation of the lamellar grating problem
through the concept of adaptive spatial resolution,’’ J. Opt.
Soc. Am. A 16, 2510–2516 (1999).

25. K. S. Yee, ‘‘Numerical solution of initial boundary value
problems involving Maxwell’s equations in isotropic me-
dia,’’ IEEE Trans. Antennas Propag. AP-14, 302–307
(1966).

26. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K.
Gaylord, ‘‘Formulation for stable and efficient implementa-
tion of the rigorous coupled-wave analysis of binary grat-
ings,’’ J. Opt. Soc. Am. A 12, 1068–1076 (1995).

27. Ph. Lalanne and M. P. Jurek, ‘‘Computation of the near-
field pattern with the coupled-wave method for TM polar-
ization,’’ J. Mod. Opt. 45, 1357–1374 (1998).

28. See Chap. 10 in Ref. 12, for instance.
29. L. Li, ‘‘Use of Fourier series in the analysis of discontinuous

periodic structures,’’ J. Opt. Soc. Am. A 13, 1870–1876
(1996).

30. C. Vassallo, ‘‘Improvement of finite difference methods for
step-index optical waveguides,’’ IEE Proc. J: Optoelectron.
139, 137–142 (1992).

31. H. J. W. M. Hoekstra, G. J. M. Krijnen, and P. V. Lambeck,
‘‘Efficient interface conditions for the finite difference beam
propagation method,’’ J. Lightwave Technol. 10, 1352–1355
(1992).

32. S. F. Helfert and R. Pregla, ‘‘Finite difference expressions
for arbitrary positioned dielectrics steps in waveguide
structures,’’ J. Lightwave Technol. 14, 2414–2421 (1996).

33. R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopo-
ulos, and O. L. Alerhand, ‘‘Accurate theoretical analysis of
photonic band-gap materials,’’ Phys. Rev. B 48, 8434–8437
(1993); R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Jo-
annopoulos, and O. L. Alherhand, ‘‘Erratum: Accurate
theoretical analysis of photonic band-gap materials [Phys.
Rev. B 48, 8434 (1993)],’’ Phys. Rev. B 55, 15942 (1997).


