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Stochastic artificial retinas: algorithm,
optoelectronic circuits, and implementation

Philippe Lalanne, Donald Prévost, and Pierre Chavel

An analogy can be established between image processing and statistical mechanics. Many early- and
intermediate-vision tasks such as restoration, image segmentation, and motion detection can be formu-
lated as optimization problems that consist in finding the ground states of an energy function. This
approach yields excellent results, but, once it is implemented in conventional sequential workstations, the
computational loads are too extensive for practical purposes, and even fast suboptimal optimization
approaches are not sufficient. We elaborate on dedicated massively-parallel integrated circuits, called
stochastic artificial retinas, that minimize the energy function at a video rate. We consider several
components of these artificial retinas: stochastic algorithms for restoration tasks in the presence of
discontinuities, dedicated optoelectronic hardware to implement thermal motion by photodetection of
speckles, and hybrid architectures that combine optoelectronic, asynchronous-analog, and clocked-digital
circuits. © 2001 Optical Society of America

OCIS codes: 100.3020, 100.2080, 100.1160.
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1. Introduction

In early and intermediate vision, artificial vision sys-
tems are confronted with two major problems. The
first problem in machine vision is the sheer amount of
input data to be acquired, managed, and processed.
The extraordinary volume of data in real-time gray-
level images leads to communication bottlenecks in the
flow of data among imager, memory, and processor in
conventional machines. The second problem arises
from the fact that the acquisition system provides in-
complete two-dimensional and noisy observations of
the three-dimensional scene. The interpretation of
the data requires solution of an inverse problem. One
has to introduce generic constraints into the problem
to force the solution to lie in a subspace of the solution
space by incorporating physical a priori information at
the scene. In this paper we elaborate on dedicated
massively-parallel integrated circuits, called stochas-
tic artificial retinas, that rely on regularization meth-
ods to solve the inverse problem through video-rate
stochastic minimization of appropriate energy func-
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tionals. These retinas can be used as single-circuit
sensors dedicated to a specialized application or as
modular early-vision modules that are assembled at
the board level and that are used as front-end proces-
sors for a variety of vision applications.

Many problems such as those of edge and motion
detection, segmentation, and restoration in early and
intermediate vision can be formulated in terms of en-
ergy minimization.1 The energy function combines a
posteriori knowledge of the data acquisition system
and some a priori knowledge of image structures.
The latter is important since it regularizes the inverse
problem by restricting the set of possible solutions.
Within the framework of Markov random fields,2
a priori and a posteriori knowledge is simply com-
ined through Bayes theory. In general, the Markov
andom field formulation exhibits two interesting
eatures. First, because only small neighborhood sys-
ems are involved for most early- and intermediate-
ision tasks, the formulation yields a simple form for
he energy function whose gradients involve only local
omputations. Second, experimental evidence ~see,
or instance, Refs. 2–4! has shown that, in practice,
nergy functions with small neighborhood systems can
e minimized with manageable, albeit still heavy, com-
utational loads.
The criterion that is most often used for solution of

he optimization problem is known as a maximum a
osteriori ~MAP! estimator. Finding the MAP esti-
ate is clearly a formidable computational task: For

n image with N 3 N pixels and G gray levels, the
10 August 2001 y Vol. 40, No. 23 y APPLIED OPTICS 3861
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number of possible intensity images is G , which
ules out any direct search, even for small values of G
nd N. A useful computational approach consists in
erforming a random exploration of the energy land-
cape following the Gibbs distribution, i.e., visiting
onfigurations with a probability proportional to the
xponential of the energy. Several algorithms such
s the Gibbs sampler2 permit such random explora-
ion. The computation of the MAP estimate is pro-
ided by annealing.5 The temperature is continually

decreased, so high-energy configurations are less and
less frequently visited during the computation. At
the end of the annealing, a deep minimum of the en-
ergy landscape is obtained in practice.

When the random exploration is implemented in a
conventional computer, computational loads are ex-
pensive, and suboptimal deterministic algorithms
are usually preferred for the MAP estimation. In
this paper we focus on very large-scale integrated
~VLSI! optoelectronic circuits, hereafter called sto-
hastic artificial retinas, for implementing video-rate
inimization in early- and middle-vision tasks by use

f stochastic rather than deterministic approaches.
ore precisely, we try to answer the following two

uestions: A, Can we design massively-parallel ma-
hines that are able to perform video-rate stochastic
ptimization in early and middle vision? B, How do
hese machines based on stochastic processing com-
ete with their deterministic counterparts, especially
n terms of problem-solving power and complexity of
mplementation? Several related studies based on de-
erministic minimization were reported previously;
ee, for instance, Refs. 6–11. The originality of our
pproach lies in the deliberate choice to consider sto-
hastic processing. This choice was motivated by
he fact that stochastic processing is expected to pro-
ide better estimates than deterministic processing
ver an enlarged set of energy functions or of process-
ng tasks.

Obviously, answering questions A and B is diffi-
ult, especially because of the large variety of algo-
ithms and models that are involved in image
rocessing. However, we shall see that a partial an-
wer can be obtained for restricted applications. For
everal reasons that are discussed below, the classic
roblem of image restoration appears suitable for
tudying the feasibility and relevancy of stochastic
rtificial retinas. Thus in this paper we focus on the
o-called compound Gauss–Markov random field
odels, which can be described by the posterior dis-

ribution

P~x, lyy! 5
1
Z

exp 2 E~x, l, y!yE0, (1)

here

E~x, lyy! 5 iy 2 Fxi2 1 l2@iMlxi2 1 V~l!#, (2)

Z and E0 are normalization constants, y is an N 3 N
matrix that represents sparse and noisy observation
data, x is a field with continuous variables ~pixel
862 APPLIED OPTICS y Vol. 40, No. 23 y 10 August 2001
process! defined on a regular N 3 N lattice, and l is
another field with binary variables that represent the
presence or absence of edges ~line process!. As in
many related studies ~see, for instance, Refs. 2 and
12!, the binary sites are placed midway between the
two components of each vertical or horizontal pair of
pixels; see Fig. 1 for more details. Notice that sites
at or near the boundary have fewer neighbors than
interior sites. In what follows, we adopt the natural
free-boundary model of Fig. 1, and no periodic bound-
aries or toroidal lattices are considered. In Eq. ~2!,
l2 is the regularization parameter that controls the
degree of regularity of the solution or, equivalently,
reflects the confidence in the data. This parameter
has to be estimated and is related to E0 and to the
variance of the white additive Gaussian noise, which
is assumed throughout this paper to be responsible
for the noisy observation. N2 3 N2 matrix F
is sparse when it represents a possible blur of the
observed data or can be a more globally interacting
projector when middle-vision tasks such as tomo-
graphic reconstruction are considered. Although
the algorithm contribution presented in this paper is
valid for any matrix F, we are more concerned in

hat follows with blurring because blurring involves
ore-modest neighborhood sizes compatible with

arallel processing. V~l! is the so-called potential.
t is simply V~l! 5 a ¥i li when noninteracting dis-
ontinuities are considered ~the energy cost for set-
ing a discontinuity li to l is simply a for any i! or can

take more-complex forms ~see, for instance, Refs. 2
and 12 and Fig. 6! when interacting boundaries that
exploit certain physical and geometric constraints on
discontinuities, such as smoothness and connection
features, are taken into account. Ml is a 2N2 3 N2

matrix that represents a smoothing operator that in-
corporates the line field. With free boundary condi-
tions ~as is the case in most early-vision problems!,

l has 2N useless null lines that can be removed.
or simplicity, the sizes of matrices given in what

ollows will include null lines or columns ~boundary
ffects are omitted for clarity!. Specifically, Ml is
efined

iMlxi2 5 (
iÞkN~k51,2,3, . . .!

N2

~ xi 2 xi11!
2~1 2 vi!

1 (
i51

N22N

~ xi 2 xi1N!2~1 2 hi!. (3)

Fig. 1. Field structure for N 5 4: circles, pixel field; lines, line
field.
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In Eq. ~3!, lexicographic notation is used for number-
ng pixel and line sites, and horizontal and vertical
ine sites are denoted h and v, respectively. The
nergy function of Eq. ~2! can be viewed as a gener-
lized form of the classic regularization functional

E~xyy! 5 iy 2 Fxi2 1 l2iMxi2, (4)

ncorporating discontinuities. To that end, note
hat smoothing operator M in Eq. ~4! is replaced by
perator Ml in Eq. ~2!, where l denotes the line-site
et that results from the union of h and v.
In attempting to answer questions A and B, we find

estoration problems that rely on the energy function
f Eq. ~2! attractive for several reasons. First, inas-
uch as it deals explicitly with two different fields
ith binary and continuous variables, the energy

unction of Eq. ~2! appears to be appropriate for use in
xamining issues related to the implementation of
tochastic artificial retinas. Second, as a generali-
ation of the classic regularization functional of Eq.
4!, the energy function can be applied to many prob-
ems in early and middle vision that previously had
een solved with standard regularization.13 Third,

the essential problem of preserving discontinuities in
image restoration is directly addressed by the energy
function of Eq. ~2!. Finally, although much research

as addressed the energy function of Eq. ~2!, to our
nowledge no optimal deterministic algorithm exists
or interacting boundaries. For noninteracting dis-
ontinuities, one can use nearly optimal fully deter-
inistic algorithms14,15 to reduce computational

costs dramatically. The fact that deterministic ap-
proaches are restricted to optimization problems with
noninteracting line processes is relevant for access to
unique features of stochastic artificial retinas and for
answering question B.

In Section 2 an optimal stochastic algorithm for
finding the ground state of the energy function of Eq.
~2! is described. This algorithm combines different

inds of noise source to produce samples of the inten-
ity and line sites. For a fixed temperature, it
chieves thermal equilibrium, sampling the posterior
istribution of Eq. ~1!. It includes a simulated an-
ealing procedure for computing MAP estimates.
he algorithm preserves local computation, is paral-

el and, as we show in Section 4 below, is suitable
or VLSI implementation. By considering restora-
ion problems in one- and two-dimensional image
ormats, in Section 3 we analyze the overall perfor-
ance of the new algorithm. We perform computa-

ional tests to evaluate the ability of the algorithm to
ample at thermal equilibrium and to provide MAP
stimates. Moreover, the restoration performance
btained for noninteracting and interacting line pro-
esses are compared. Comparative visual results for
rtificial and real images are provided for MAP esti-
ates. In Section 4 we analyze some relevant ar-

hitectures for the implementation of stochastic
rtificial retinas that provide video-rate global mini-
ization. These retinas are seen as VLSI circuits

hat incorporate photodetectors illuminated by the
mage to be processed and by time-varying speckle
atterns. The speckles provide random illumina-
ion, which, once it is converted into photocurrents,
cts as a source of thermal noise for stochastic relax-
tion. A retinal architecture dedicated to the mini-
ization of the energy function of Eq. ~2! is described.
24 3 24 smart VLSI sensor that uses differential

peckle detection to minimize Ising-spinlike energy
unctions at the video rate has been designed and
abricated. Experimental results of the school prob-
em of binary image restoration are presented. Sec-
ion 5 summarizes the main results obtained
hroughout the paper and provides a discussion of the
apabilities and limitations of stochastic artificial ret-
nas for early vision.

2. Stochastic Algorithm for Compound Gauss–Markov
Random Fields

Minimizing the nonconvex energy function of Eq. ~2!
s not an easy task. The reason for this has to do

ainly with the dimension of the problem, which is
sually extremely large, and to the existence of many

ocal minima. In the research reported in Ref. 2, the
ibbs sampler algorithm was used to sample the two
elds ~x and l!, but experimental results were ob-
ained only with multilevel ~not continuous! xi vari-

ables and for a small ~no more than four! number of
gray levels. Several contributions to generalizing
the primary work of Ref. 2 to continuous variables of
the intensity field were reported previously. It is not
our intention to list all these contributions; we re-
strict ourselves to a brief overview of those that are
strongly related to our research and that are useful
for its understanding. All these studies rely on the
same basic idea and exploit the semiquadratic form of
the energy function: For a given line process config-
uration, the resultant conditional energy functional
is a nondegenerate multinormal distribution. In
Ref. 16 a mixed-annealing ~MA! algorithm is pro-
posed that relies on the facts that the conditional
energy functional is convex and that its unique min-
imum can be found straightforwardly. It uses the
Gibbs sampler to update the line process but changes
the stochastic relaxation of the intensity field into a
deterministic relaxation. The deterministic relax-
ation removes most of the computational burden,
namely, the sampling of the continuous fields, but
breaks thermal equilibrium. Thus the MA does not
guarantee global minimization. Generalization of
the Gibbs sampler to continuous variables17,18 is not
straightforward, and some care must be taken in gen-
eral. For the specific case of Gaussian distributions,
relatively simple stochastic algorithms for sampling
the x field exist.19,20 These algorithms use N2 inde-

endent Gaussian delta-correlated noise samples for
ach full iteration of the x field. One iteration cor-
esponds to visiting all pixels and performing a basic
ampling step. As for the Gibbs sampler, many full
terations must be repeated a great many times to
uarantee convergence toward thermal equilibrium.
n the research reported Ref. 10, an algorithm, called
lobal hereafter, is proposed. It is based on an im-
10 August 2001 y Vol. 40, No. 23 y APPLIED OPTICS 3863
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plicit formulation of the x field and restricts the sto-
chastic search to subspace $xl*, l%, where xl* is the

nique intensity configuration that minimizes the
onditional energy functional for a given boundary
eld l. This approach allows global optimization to
e performed, but the elimination of the x field intro-
uces long-range interaction and sacrifices the com-
utational benefits of local neighborhood systems in
arly vision. Thus the global algorithm is not par-
llel. By exploiting the semiquadraticity of the en-
rgy function, Geman and Yang21 proposed to sample
he multinormal distribution of the x field directly by
sing an annealing procedure based on a fast Fourier
ransform, which provides global minimization. We
ntroduce an algorithm, called the quasi-static relax-
tion ~QSR! algorithm, that provides MAP estimates
or the energy function of Eq. ~2!. This algorithm,
hich was reported previously in a preliminary

tudy,22 is suitable for massive parallel implementa-
ion, and is especially efficient when small neighbor-
ng structures ~sparse matrices F! are considered.

A Markov chain $@X~k!, L~k!#, k 5 0, 1, 2, . . .% with
its associated temperature sequence $Tk, k 5 0, 1,
2, . . .% is constructed as follows. For each k, core

rocedure H is applied as follows:

Subprocedure H1. Generate X~k! from L~k 2 1!
by means of the conditional distribution of x, given
l 5 L~k 2 1!.

Subprocedure H2. Generate L~k! from the cur-
ent configuration X~k! by sampling the boundary
rocess, using the Gibbs sampler algorithm as de-
cribed in Ref. 2, by repeatedly programming the
ibbs sampler for local boundary replacement.

Subprocedure H1 directly exploits the fact that the
nergy function of Eq. ~2! is semiquadratic and thus
hat the conditional distribution of x given l is Gauss-
an, as we discuss in detail below. Subprocedure H2
s more usual; see, for instance, Refs. 2 and 16. In a

ore general form, nl full iterations over the line field
can be provided, and, for each k, subsequences $Lq~k!,
q 5 1, 2, . . . nl% are generated. Clearly, for a given X
onfiguration, L1~k! is obtained from Lnl

~k 2 1!, Lq~k!
~q Þ 1! from Lq21~k! and L~k! 5 Lnl

~k!. Although
the convergence rate of the core procedure toward
thermal equilibrium probably depends on parameter
nl, we did not explore this issue. Throughout the

aper, the numerical results are obtained for nl 5 1.
hus the core procedure consists in visiting once all

he pixel and line sites. Because only short-range
nteractions have to be considered in updating the
ine process, the basic updating step is rather elemen-
ary and does not require complex computations.
oreover, as the associated chromatic number is

mall, a high degree of parallelism can be imple-
ented. For the MAP estimation, a slowly decreas-

ng temperature sequence is implemented. General
esults of simulated annealing guarantee conver-
ence in distribution to a measure concentrated over
he global minima of E~x, lyy! if the cooling schedule
s sufficiently slow. However, because we are con-
864 APPLIED OPTICS y Vol. 40, No. 23 y 10 August 2001
erned mostly with practical implementation, we opt
or a faster cooling schedule and construct the inho-
ogeneous Markov chain with temperature T~k!

iven by

T~k! 5 cT~k 2 1!, (5)

here c , 1. In the numerical and experimental
esults reported below, control parameter c was set
qual to 0.9. This annealing schedule no longer
uarantees convergence to optimal solutions, but it
oes return nearly optimal solutions for most prob-
ems.23 At each given temperature, nscan full iter-

ations are performed, where the parameter nscan
represents the length of each homogeneous Markov
chain. In summary, the QSR algorithm involves the
following steps:

1. Set the initial temperature T~0!.
2. Provide nscan iterations of the core procedure

H at temperature T~k!.
3. Set the new temperature according to Eq. ~5!.
4. Return to step 2 as long as T~k! is larger than
final control temperature.

Let us consider step H1 of procedure H. For a
iven temperature T, the conditional distribution of x
iven l, PT~xul!, is normally distributed. Identifying
T~xul! with the canonical form A exp@2~1y2!~x 2
!tC21~x 2 m!# of a multinormal distribution, we read
ean vector m and covariance matrix C simply as

m 5 @FtF 1 l2Ml
tMl#

21Fty, (6a)

C 5
T
2

@FtF 1 l2Ml
tMl#

21. (6b)

We now proceed with generating samples according
to the multinormal distribution function defined by
Eqs. ~6!. To do so we solve for x the following set of
inear equations,

~FtF 1 l2Ml
tMl!x 5 Fty 1 Bwqs, (7)

where B is a symmetric matrix defined hereafter and
wqs is a Wiener vector, i.e., a collection of zero-mean
ndependent Gaussian random numbers of unit vari-
nce. Clearly, the average solution for x of Eq. ~7!
atisfies Eq. ~6a!. For x to be normally distributed
ith the covariance matrix of Eq. ~6b!, B has to sat-

sfy the following fluctuation-dissipation relationship
see Appendix A for more details!:

BBt 5 ~Ty2!@FtF 1 l2Ml
tMl#. (8)

A. General Method

If wqs is an M component vector with M . N2, it is
always possible to solve Eq. ~8! for N2 3 M matrix B.

or instance, to calculate B for M 5 N2 we can use
the unit transform matrix U, which reduces @FtF 1
l2Ml

tMl# to diagonal form,

U@FtF 1 l2Ml
tMl#Ut 5 iki~l!diji, (9)
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where ki~l!, i 5 1, 2, . . . N , are the N eigenvalues of
@FtF 1 l2Ml

tMl# and dij is the Kronecker symbol: dij
equals 1 if i equals j and 0 otherwise. As a symmet-
ric matrix, B is given by

B 5 Utiki~l!1y2dijiU. (10)

his approach involves N2 independent standard
normal random variables. In Ref. 21 the fast-
Fourier-transform-based annealing algorithm ex-
ploits the relationship between block circulant
matrices and a two-dimensional discrete Fourier
transform to effectively reduce the burdensome com-
putation of the eigenproblem. It is valid if toroidal
boundary conditions are used and, in our opinion, is
highly efficient for tomographic reconstruction prob-
lems but is computationally expensive for problems
that involve short-range interactions. More specifi-
cally, we note that every bij~l! element of matrix B
potentially depends on the whole line process, even
for a sparse matrix F; the local nature of the field
interactions is not reflected in B.

B. Present Method

A more practical solution of Eq. ~8! is inspired directly
y the form of Eqs. ~6!. Indeed, it is easy to verify
hat @N2 3 3N2# matrix B, given by

B 5 ÎTy2 @Ft, lMl
t#, (11)

atisfies the fluctuation-dissipation relationship of
q. ~8!. Thus the companion quasistatic vector wqs

required for solving Eq. ~7! has 3N2 components.
The larger dimension of the system is compensated
for by the fact that the local structure of interaction
with the line process is retained in B. In other
words, every bij~l! element depends at most on a sin-
le line site, and parallel calculation strategies can be
mployed to increase effectiveness. Summarizing,
o implement step H1 of the procedure in the short-
ange interaction case, do the following:

1. Generate 3N2 independent Gaussian random
ariables to form vector wqs.
2. Form matrix B given by Eq. ~11!.
3. Solve Eq. ~7! for x.

he advantage of using Eq. ~7! to update the intensity
eld lies in the fact that the iterative and burdensome
tochastic computation process associated with the
ntensity field is replaced by a fast and deterministic
omputation. Basically, the computation requires
olving Eq. ~7!. The largest matrix B used for the
omputation has dimensions N2 3 3N2. But, when

blurring operators with a narrow support are consid-
ered, the matrix is sparse, and efficient algorithms
can be employed for solving the system of Eqs. ~7!.

he QSR and MA algorithms are similar and are of
quivalent computational complexity; both algo-
ithms use the Gibbs sampler algorithm for sampling
he line field and require solution of a system of N2

equations for sampling the intensity field. The dif-
ference between the algorithms lies in the fact that,
whereas the MA algorithm samples the intensity
field at a null temperature and imposes the condition
that x 5 m at every iteration, the QSR algorithm uses
independent Gaussian random variables to restore
thermal equilibrium.

3. Numerical Results

In this section we report on several tests performed
with the QSR algorithm, focusing on its convergence
rate and its ability to achieve thermal equilibrium in
the coupled field or to provide MAP estimates. Also,
the influence of interacting or noninteracting line
processes on the quality of the restoration is dis-
cussed.

A. Tests Performed on One-Dimensional Signals

We carried out computer simulations to test whether
thermal equilibrium was achieved for the coupled
field ~x, l!. The procedure was as follows: For a
iven data configuration y and from an arbitrary con-
guration of the coupled field, the system was slowly
nnealed ~nscan 5 50! from a high temperature down
o a given temperature T. At that temperature,
0,000 configurations ~x, l! and their corresponding
nergy values were collected after each global update
f the fields. Then the system was annealed to an-
ther temperature, T9 ~T9 , T!. At that tempera-
ure, another set of 10,000 energy samples was
ollected. Directly testing the Boltzmann–Gibbs
istribution of Eq. ~1! is not feasible because of the
ugeness of the configuration space. Instead, we
refer to deal with the canonical distribution P~E, T!
t temperature T,

P~E, T!dE 5 CTV~E!exp~2EyT!, (12)

where CT is a normalization constant that depends
nly on temperature and V~E! is the unknown state
ensity of the coupled fields. P~E, T!dE is the prob-
bility of observing a configuration ~x, l! with energy
n the interval @E; E 1 dE@ at thermal equilibrium.
rom the two sets of samples collected at tempera-
ures T9 and T, the two frequency distributions P9
nd P of observed populations were computed.
9DE and PDE are the number of configurations with
nergy in the interval @E; E 1 DE@ observed at tem-
eratures T9 and T, respectively. If the sampling is
chieved under thermal equilibrium, as V~E! is inde-
endent of T, the logarithm of the ratio of the two
requency distributions is given by

lnF P
P9G 5

~T 2 T9!

TT9
E 1 C~T, T9!, (13)

where C 5 ln@CT# 2 ln@CT9# is a negative constant
that depends on T and T9. According to Eq. ~13!, the
ratio logarithm should vary linearly with energy; a
slope m 5 ~T 2 T9!yTT9 is expected.

For illustration, we consider the weak-string prob-
lem defined by the one-dimensional signal shown in
Fig. 2. Uncorrelated Gaussian noise with a stan-
dard deviation s of 16 is added to form the 128 3 1
10 August 2001 y Vol. 40, No. 23 y APPLIED OPTICS 3865
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Table 1. Comparison of Quality of the MAP Estimation for the Weak

w

3

input data y. No blurring is considered, and matrix
F is equal to identity matrix I. The parameters of
he energy function are l 5 4.5 and a 5 150. In Fig.
, the logarithm ~PyP9! is plotted versus energy E in

the overlapping region of the two histograms. Nu-
merical data correspond to black rectangles, and the
vertical bars are the uncertainties as estimated from
the population’s square root. Results were gathered
for temperatures T 5 9.41 and T9 5 8.47 ~m 5
0.0118!. The best least-squares line from the data
has a slope equal to 0.012 6 0.004 and a negative
coordinate 213.7 6 0.1 at the origin. Simulation
results and theoretical prediction are in good agree-
ment, with departures from the theoretical curve
only at both ends, where frequencies are weak. This
result clearly illustrates the achievement of thermal
equilibrium for the coupled field. In Section 4 below,
we apply this test to experimental data obtained with
a fully parallel analog–digital machine. The
achievement of thermal equilibrium is important in
practice, especially if estimates other than the MAP
estimate, such as the maximum of the posterior mar-
ginals or the thresholded posterior mean, are cho-
sen.24

When a fast cooling schedule such as that of Eq. ~5!
is used, thermal equilibrium is not perfectly achieved
at each temperature T~k!. It is intuitively clear that
large decrements in T~k! will require longer homoge-
neous Markov chain lengths to be able to restore
quasi equilibrium at the next temperature T~k 1 l !.

Fig. 2. 128 3 1 weak string.

Fig. 3. Numerical test performed on the weak-string problem.
At each temperature, 10,000 configurations ~x, l! are collected.

he temperatures are T 5 9.41 and T9 5 8.47. Vertical bars are
tatistical uncertaincies.
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Thus there is a trade-off between large decrements
and small values of nscan. Although this assertion
can be stated in more-mathematical terms,25 we do

ot pursue the details. To gain a quantitative in-
ight into the influence of parameter nscan on the
onvergence performance of the QSR algorithm, we
roceed as follows: From the signal defined in Fig.
, a set of 50 input data y is generated with indepen-
ent instances of white Gaussian noise, all with a
tandard deviation of 16. For every instance of noise
nd for a given value of nscan, the QSR algorithm is
mplemented. The mean values of the energy of the
0 configurations obtained at the end of the anneal-
ng are listed in Table 1. As we expect, the mean
alues decrease with increasing values of nscan.
or comparison, Table 1 also provides the mean val-
es observed with the MA and the global algorithms.
e note that the MA algorithm is clearly not optimal

nd provides high mean energy values. The lowest
ean energy value is obtained for the global algo-

ithm and an nscan of 50. Although this algorithm
erforms well, we must note that it is extremely de-
anding in terms of computational loads. Because

he global algorithm restricts exploration of the con-
guration space to the set of all the local minima
ssociated with each state of the line process, we need
o solve Eq. ~6a! for m for every component of the x
ector, i.e., N2 times for each full iteration. For com-
arison, note that only one inversion per full iteration
s required for the QSR algorithm, whatever the num-
er of pixels is.

B. Reconstruction Problems with Two-Dimensional
Images

In Subsection 3.A we focused on the weak string as a
one-dimensional discontinuity-detecting filter. In
this subsection we examine its two-dimensional
equivalent, the weak membrane. To qualitatively
and quantitatively study the potentialities of the
QSR algorithm, we present the results of several nu-
merical computations. The computations were all
conducted without any blurring in the image ~F 5 I!.

For the first experiment, the 64 3 64 input image
hown in Fig. 4~a! was considered. This image was
ynthesized by addition of white Gaussian noise ~m 5

String of Fig. 2 for Various Algorithms and for Various Values of
Parameter nscana

Algorithm ~nscan! Mean Energy

QSR ~1! 90.1
QSR ~10! 80.5
QSR ~50! 78.0
QSR ~100! 77.5
MA ~10! 217.9
MA ~50! 218.6
Global ~5! 77.2
Global ~10! 77.2
Global ~100! 77.0

aThe mean energy is obtained by averaging over 50 instances of
hite Gaussian noise.
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0, s 5 65! to an original synthetic image formed by a
linear ramp with a 39 3 39 square base. The min-
imum and maximum step heights on the left and the
right sides of the original image are 50 and 250,
respectively. Figure 4~b! shows a restored image ob-
tained with the QSR algorithm. We delineate the
outcome of the line process by painting white any
pixel sides at a discontinuity. For the numerical
computation, no interaction in the line field was con-
sidered, and the free parameters ~l, a! were chosen to
equal ~4, 500!. Basically, the restored image exhib-
its a large smooth area that corresponds to the square
base of the original image. However, we note that
there are several inclusions at the pixel size level and
that the small step on the left side is badly restored.
Although the degradation that is due to white noise is
severe and no interaction in the line process is used
for the restoration, no ending appears in the line
process of Fig. 4~b!, and closed regions in the image
are obtained. This tendency to form unbroken lines
without any need to impose additional cost on line
endings is an intrinsic property of membrane elastic-
ity that in Ref. 14 is termed hysteresis. It is worth
mentioning that, despite the hysteresis, in other ex-
periments performed with the weak membrane the
restored image did not always exhibit closed line pro-
cesses. In particular, the upper left-hand corner of
the ramp was smooth in several observations.

For the second experiment we considered the noisy
image of Fig. 5~a!. This synthetic image was ob-
tained by addition of white Gaussian noise ~m 5 0,

5 65! to an original synthetic image, a step with a
9 3 39 square base. The step height is 50. Figure
~b! shows the restored image obtained with the QSR
lgorithm for ~l, a! 5 ~3, 250! and nscan 5 300.
learly, the restoration quality is poor, but the values

3, 250! of the free parameters are the best values
hat we could find in several trials. Figure 5~c!
hows the restored image obtained with the QSR al-
orithm for the interacting line process shown in Fig.
and for a 5 300. Basically, the potential favors

urns and continuations and penalizes endings. We
ote that, except for some minor inclusions of one-
ixel size, the step is approximately reconstructed.
he net benefit of regularization by explicit incorpo-
ation of an interacting line process was also ob-

Fig. 4. 64 3 64 weak membrane. ~a! Hand-drawn ramp image
corrugated by white Gaussian noise ~m 5 0, s 5 65!. ~b! Restored
image obtained without interaction of the line process ~l 5 4, a 5
500, nscan 5 300!.
erved for real images with or without blurring. To
chieve a more-accurate reconstruction, we tried
ther potentials. As was proposed in Ref. 26, some
ine configurations, such as ending boundary place-

ents, were forbidden by constrained optimization.
e could not achieve a better restoration quality. In

ur opinion, for the image of Fig. 5~a!, better recon-
tructions could be achieved with higher-order mod-
ls of the line process that would involve larger

Fig. 5. 64 3 64 weak membrane. ~a! Hand-drawn step image
corrugated by white Gaussian noise ~m 5 0, s 5 65!. ~b! Restored
image obtained without interaction of the line process ~l 5 3, a 5
250, nscan 5 300!. ~c! Restored image obtained with l 5 3, a 5
250, nscan 5 300, and the potentials of Fig. 6.

Fig. 6. Numerical values of potentials Vij used for the interacting
line process. Crosses, nodes; vertical and horizontal lines, exist-
ing edges. Rotational invariance is assumed.
10 August 2001 y Vol. 40, No. 23 y APPLIED OPTICS 3867
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neighborhood structures. We did not explore this
method of achieving reconstructions because it might
be difficult to implement in dedicated circuitry.

4. Implementation of Stochastic Artificial Retinas

Here we discuss architecture and hardware for im-
plementing stochastic artificial retinas. The follow-
ing discussion is restricted to early-vision tasks with
reasonably local neighborhood systems, for which
communication requirements are small and a high
degree of parallelism can be achieved by suitable col-
oring of the sites. These retinas provide video-rate
stochastic relaxation operations with which nearly
optimal estimates can be computed. The retinas are
silicon chips built from a mesh of processing elements
~PEs!, each with its own photodetectors and some
computational abilities. The latter are rather weak,
but the computational power comes from all the PEs
working in parallel. Clearly, the implementation of
massive parallelism is not obvious from a practical
point of view because the required silicon area per PE
is much too large. Typically, a 256 3 256 regular
rray of PEs could be implemented on a 1-cm2 chip in
1-mm complementary metal-oxide semiconductor

CMOS! technology, provided that each PE contains
ewer than 30 transistors; this of course is a very
mall size, which can be achieved only if analog op-
rations are implemented.

A. Parallel Generation of Massive Amounts of Random
Numbers

Ideally, a stochastic artificial retina that involves
256 3 256 PEs working in parallel at a global chip
requency of 1 MHz requires approximately 65 3 109

independent random numbers each second.
Clearly, such a huge rate deserves particular study.
Although noise often appears naturally in systems,
paradoxically, when one is attempting to use this
noise to generate random numbers it is often difficult
to obtain properties that are sufficiently statistically
random. Several techniques that exploit natural
noise sources27–30 or pseudorandom-number genera-
ors31,32 are compatible with these requirements.

Our approach relies on speckle. Speckle is a nat-
ral noise of coherent light that is observable when
he random complex amplitudes of many coherent
catterers are added. The resultant interference
attern is recognizable by its random granularity,
hich can be described by statistical means.33 In a

preliminary study34 we argued in favor of the use of
speckle created by step-index fibers. By computing
values as low as 1023 for some first-order autocorre-
lation values and by successfully implementing sta-
tistical tests of independence, we concluded that fiber
speckle offers good statistical properties of space and
time independence. More recently, the differential
detection of speckles implemented by a phototransis-
tor pair was shown35 to be an efficient tool for imple-

enting zero-mean Gaussian random current
ources for VLSI silicon circuits. Analytical and ex-
erimental evidence shows that the photocurrent’s
868 APPLIED OPTICS y Vol. 40, No. 23 y 10 August 2001
tandard deviation s is proportional to the mean il-
umination ^I& of each phototransistor:

s 5 A^I&, (14)

nd thus one can set it freely by controlling the laser
ower. In Eq. ~14!, proportionality factor A depends
nly on the average number of speckles incident onto
ach phototransistor and is fixed by the experimental
etup. Although it exploits the analog nature of
peckle statistics, the differential detection is robust
nd accurate; deviations from Gaussian laws are less
han 1%.

The quasi-Gaussian laws obtained by the differen-
ial detection of speckles can be exploited for sam-
ling binary variables. As has been explained
bove, binary variables are important in early and
iddle vision because they may encode the presence

r absence of discontinuities or may label sites in
otion or at rest, for instance. We denote these

ariables with on–off states $21, 11% Si, i 5 1,
. . . N. The local site replacement used repeatedly

or sampling ~heat-bath criterion! is

p~Si 5 1! 5
1

1 1 exp~FiyT!
, (15)

here force Fi is the energy difference between the on
and off states: Fi 5 E~Si 5 1uSr 5 sr, r Þ i! 2 E~Si 5
21uSr 5 sr, r Þ i!.

The implementation of the heat-bath criterion with
speckles36 relies on the fact that the cumulative dis-
tribution function of a Gaussian, the error function,
never differs by more than 1% percent from the sig-
moid probability function of Eq. ~15!. A possible im-
plementation with a comparator is shown in Fig. 7.
Four currents are injected into the comparator: the
two photocurrents generated by the two phototrans-
istors and illuminated by independent speckles and
two other currents, Fi

1 and Fi
2, related to the force

by Fi 5 Fi
1 2 Fi

2 and typically representing the
ositive and negative contributions in F. The sto-
hastic PE depicted in Fig. 7 was integrated in the
ame CMOS technology as that used in the study
eported in Ref. 35. Under time-varying speckle il-
umination, its operation was tested, and we com-
uted the probability that the output voltage Si

equals 5 V, p~Si 5 1! by averaging for different values
f the photocurrents encoding the force. Experimen-

Fig. 7. Clipped differential detection of speckle with a dual-rail
comparator; Fi 5 Fi

1 2 Fi
2.
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tal results ~circles! are shown in Fig. 8 and are com-
pared with those for the sigmoid heat bath ~solid
curve!. Excellent agreement is obtained. Simple

imensional analysis shows that temperature T is
roportional to the average speckle illumination.
hus we can control temperature by changing the

aser power. To avoid any confusion, let us note that
he S-shaped response shown in Fig. 8 is due only to
he probabilistic updating and not to any nonlinear
esponse of the comparator. In the absence of
peckle, a Heaviside function is obtained instead of
he S-shaped response ~null temperature!.

B. Stochastic Artificial Retinas for Implementing Ising
Spin Models

To gain a more-quantitative insight into hardware
problems relative to the implementation of stochastic
artificial retinas, we built a prototype that is able to
perform stochastic processing of spin-glass models.37

This choice was also motivated by the fact that spin-
glass models exhibit a strong analogy with some sim-
ple early-vision tasks.24,38 According to the analogy,
the binary pixels Si are called spins, and the energy

~S! of a given configuration S is

E~S! 5 2
1
2 (

i51

N

(
j51, jÞi

N

JijSiSj 2 (
i51

N

hiSi. (16)

In Eq. ~16!, hi denotes an external local field and Jij is
the interaction coefficient between spins i and j. We
onsider a two-dimensional spin-glass model ar-
anged in an image format, with symmetrical ~Jij 5

Jji! and binary ~61! interaction coefficients. Only
horizontal and vertical nearest neighbors are consid-
ered; i.e., the system is a first-order Markov field in
the i and j directions.

The system that we implemented combines speckle
nd electronic circuitry. It is composed of two main
evices: A silicon integrated circuit is in charge of
he parallel computation of the energy gradients

Fig. 8. Circles and solid curve, experimental data and the fitted
heat-bath criterion, respectively. Every circle was estimated over
100,000 collected independent measurements.
forces! involved in the minimization, and a speckle
andom-number generator provides the circuit with
04 spatially and temporally independent illumina-

tions each microsecond. Following the analogy with
statistical mechanics, the integrated circuit alone im-
plements the time evolution of the spin system at a
null temperature, whereas the speckle illuminations,
converted into photocurrents, act as sources of ther-
mal noise. The temperature is read as the amount
of randomness provided by the speckle photocur-
rents, and we obtain annealing simply by decreasing
the laser power.

The integrated circuit implemented with 1-mm
CMOS digital technology is composed of a 24 3 24
array of identical PEs. The total circuit area, includ-
ing connection pads, is 8 mm 3 8 mm. Every PE
ncludes an analog and a digital block. The digital
lock of the ith PE stores the spin value Si and two of

the four coupling coefficients Jij in three static mem-
ory points. These three static memory points are
incorporated into a horizontal shift register, permit-
ting reading and writting of the spin configurations
and Jij coefficients. The four bipolar products JijSj
involved in the computation of the force Fi are imple-
mented with logical XOR gates. The analog block is
ased on a dual-rail architecture for minimizing on-
hip dispersions. This architecture fits nicely with
he differential detection of speckles. We compute
orces Fi

1 and Fi
2 by adding the positive and nega-

ive bipolar products JijSj through current summing
at the nodes of the plus and minus rails, respectively.
Further details of the electronic implementation can
be found in Ref. 39. A spatially uniform external
field can be implemented by injection of a global cur-
rent into either the plus or the minus rail of every PE,
whereas any external field configuration can be sim-
ulated by imaging of a gray-level mask illuminated
by an incoherent source onto the integrated circuit.
According to the sign of hi, the light that issues from

square subdomain of the mask is placed such as to
lluminate the phototransistor connected to the pos-
tive or to the negative rail. Finally, the photocur-
ents generated by two phototransistor speckle
lluminations are injected into their associated rails.
he same phototransistors are used for the optical

nputs of the speckle and of the nonuniform external
eld. We update spin i according to the heat-bath
riterion by latching the voltage that results from
omparison of the two rail currents into the Si mem-
ry point. We implement the speckle illumination of
he integrated circuit by imaging the exit face of a
ultimode fiber onto the circuit. The rotation speed

f a diffuser inserted between the laser diode and the
ber input face allows the time correlation of the
peckle illuminations to be controlled. This dura-
ion is adjusted to the inverse of main clock frequency
f the chip used for successively updating black-and-
hite spin sites alternately. The whole system is

ontrolled by a personal computer, enabling one to
ead and write spin values, to write interactive-
oefficient values, and to set the global and local ex-
ernal fields, the laser power, and the clock signals.
10 August 2001 y Vol. 40, No. 23 y APPLIED OPTICS 3869
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Many local tests were performed with the proto-
type to validate the digital–analog operation. We
also performed global tests to study the influence of
inaccuracies in analog computation on the overall
system performance, for instance, on the ability to
reach deep minima of the energy by annealing. Two
such tests are now described.

The first experimental test evaluates the ability of
the implemented system to sample at thermal equi-
librium. The Jij coefficients were randomly set to 1

ith a probability equal to 0.87, and no external field
as applied ~spin-glass model without a magnetic
eld!. As the configuration space is very large ~2576

Fig. 9. Test of thermal equilibrium with the implemented system.
~a! Experimental data obtained by collection of 10,000 energies at
emperatures T 5 3.02 and T9 5 2.68. ~b! Logarithm of the ratio
yP9 as a function of energy. Circles, experimental data. The
lope of the solid line is T 2 T9yTT9.

Fig. 10. Experimental results. ~a! 24 3 24 synthetic image cor
estoration with speckle ~annealing!. ~c! Restoration without sp
870 APPLIED OPTICS y Vol. 40, No. 23 y 10 August 2001
configurations!, the test was performed on the canon-
ical distribution; see Subsection 3.A. For two values
of the laser power corresponding to two tempera-
tures, T and T9, statistics were collected during time
volution of the system. Figure 9~a! shows the two
istograms obtained by collection of 10,000 configu-
ations. In the overlapping region of the two histo-
rams ~E [ @2520; 2350#!, the ratio of the
istograms is computed, and its logarithm is plotted
s a function of energy @Fig. 9~b!#. Because of spatial
ispersions that are due to the analog implementa-
ion, temperature is defined only locally, at every spin
ite. For a fixed laser power, the observation of the
robability that spin i takes the value 1 as a function
f Fi results in a stochastic updating function that
iffers slightly from the heat-bath criterion. By fit-
ing the observed and expected probabilities, we de-
ive the local temperature Ti associated with spin i.

The global temperature is defined by averaging over
all sites. For the two histograms, the global temper-
atures T and T9 are 3.02 and 2.68, respectively. The
slope m 5 ~T 2 T9!yTT9 is thus 0.042. In Fig. 9~b!
the solid line represents the least-squares fit of slope
m to the experimental data. Clearly, a deviation
exists. In fact, the best least-squares line fitted from
the experimental data has a slope m9 5 0.82 m.
This deviation is due to inaccuracies of the analog
implementation, as was confirmed by numerical sim-
ulation. In general, it was found that this test is
sensitive and reveals slight deviations from thermal
equilibrium. This conclusion also holds for numeri-
cal simulations, and in our opinion this test is a good
candidate procedure for monitoring the decreasing
rate of temperature in annealing.

The second test concerns a binary-image restora-
tion problem. The interaction coefficients are all
equal to 1. Experimental results are shown in Fig.
10. Figure 10~a! shows a letter L degraded with 25%
white channel noise. In the system, this noisy im-
age represents the external field and is encoded
through a binary-level mask that is imaged onto the
integrated circuit. The restored image, shown in
Fig. 10~b!, is obtained by annealing in the presence of
speckle. Figure 10~c! represents a typical result ob-
tained without speckle. In this case the system is

ted by white channel noise; the original image is a letter L. ~b!
~gradient descent!.
ruga
eckle
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operating at a null temperature and implements a
gradient descent algorithm. In a few iterations, it is
trapped in a local minimum that depends on the ini-
tial configuration. Comparison with numerical re-
sults obtained with a personal computer indicates
that, despite the inaccuracies of the analog imple-
mentation, the system has good overall performance
and provides deep minima. For instance, the aver-
age energy value obtained over 50 annealings with
the implemented system is only 19 larger than that
found by numerical computations performed on a per-
sonal computer. For comparison, the energies found
with a gradient descent algorithm are on the average
approximately 200 larger.

For the design of the silicon chip our primary goal
was to develop a robust prototype incorporating sev-
eral test modes to better evaluate the performance of
the stochastic processing and not to beat records in
terms of integration density or computational speed.
With respect to PE integration density, there is room
for improvement in both the logical and the analog
blocks. For a silicon VLSI chip dedicated to the res-
toration of binary images, the Jijs coefficients need

ot be reconfigurable, and no global external field has
o be implemented. It is reasonable to expect that a
oderately risky design of a 1-cm 3 1-cm silicon chip

abricated with the same technology will incorporate
pproximately 100 3 100 PEs. With up-to-date
echnologies, this density can be further increased.
owever, note that the phototransistor area ~at
resent 30 mm 3 30 mm! does not scale down well
ith decreasing resolution. Further integration will

herefore imply other approaches such as the use of
ocal plane arrays to concentrate light onto the active
reas. At present, the global clock frequency of the
hip is limited by the phototransistor’s cutoff fre-
uency ~'250 kHz!, and there is a full iteration over
ll black and white spins every 10 ms. Thus video-
ate annealings are possible if no more than 2000 full
terations are performed. This is not the ultimate
imit. In our opinion, 1 or 2 orders-of-magnitude
ncreases in the phototransistor response speed can
e achieved with a slightly different design. A
-MHz global clock frequency seems a reasonable
rediction for stochastic machines composed of an
rray of PEs operating on binary variables with local
eighborhood systems.

C. Architecture for Image Restoration Problems

In this subsection we elaborate on stochastic arti-
ficial retinas for video-rate implementation of the
QSR algorithm. A hybrid parallel architecture
that comprises analog, digital, and optoelectronic
circuits is proposed for sampling the x and l fields

nder thermal equilibrium. Of course, as we are
oncerned with VLSI silicon circuits, only short-
ange neighborhood systems are considered. For
implicity we restrict the following discussion to
arly-vision tasks for which matrix F is identity
atrix I. Our approach is directly inspired by the
ell-known fact that, according to Maxwell’s heat

heorem, the steady state of an electrical network
omposed of sources and linear resistances is the
lobal minimum of a convex quadratic form.40 The

mapping between analog networks and the solution
of variational problems has been extensively stud-
ied in the context of regularization in early vision.
Analog linear networks1 are seen as a natural com-
putational model for finding the global minimum of
the classic regularization functional of Eq. ~4!. For
solving nonconvex variational problems, nonlinear
networks have to be considered. In Refs. 6 and 24
the use of a hybrid architecture that relies on a
sequence of alternate probabilistic and determinis-
tic steps was proposed for implementing the MA
algorithm. In Ref. 10, the implementation of the
global algorithm was discussed by use of basically
the same hybrid architecture made from a grid of
digital PEs interacting with a linear neural net-
work. In Refs. 41–43, resistor-with-fuse networks
are proposed as a means for minimizing the energy
function of Eq. ~2! for noninteracting boundaries.
By tuning of the voltage control of the fuse resis-
tances, a minimization is performed through a se-
quence of convex functionals that are free of
spurious local minima. Clearly, the architecture
presented herein is directly inspired from those re-
lated papers. Its originality comes from the fact
that rigorous stochastic relaxation schemes are in-
vestigated. For this, we introduce the concept of
resistive networks corrugated by Gaussian noises.
This noise is called quasi-static to emphasize the
fact that its temporal correlation length is much
larger than the relaxation time of the network.
This situation has to be opposed to that of the well-
known Johnson noise, which automatically gener-
ates voltage fluctuations in an electric resistance.
As was explained by Nyquist,44 this noise is white in
the sense that its spectrum is almost flat up to
frequencies much higher than the inverse of the
network relaxation time. To our knowledge, the
use of quasi-static noises in linear resistive net-
works for sampling multinormal distributions was
not proposed earlier.

Before going to a description of a stochastic artifi-
cial retina for implementing the QSR algorithm, we
need to introduce a property of linear resistive net-
works corrupted by quasi-static Gaussian noise. Let
us consider a network with n 1 1 nodes. Node i ~i 5
1, 2 . . . n!, whose voltage is denoted Vi, is shown in

ig. 11. The resistance that links node i to node j is
enoted Rij ~Rij 5 Rji!, and the grounded resistance at

node i is Rii. A current of magnitude equal to Ji is
njected into node i. The associated current gener-
tor is also connected to the common ground ~node 0!
f the resistive network. Moreover, we suppose
hat, at every link between nodes i and j, a Gaussian-
oise current source with a magnitude equal to uij

~uij 5 2uji! is associated in parallel with resistance
ij. The property ~P1! of linear resistive networks

corrupted by quasi-static Gaussian noise sources can
be described as follows:
10 August 2001 y Vol. 40, No. 23 y APPLIED OPTICS 3871
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If all Gaussian sources are independent with zero
mean and variance vij given by

vij 5
T
2

Rij
21, (17)

and if the temporal correlation length of the sources
is much longer than the RC relaxation time of the
resistive network, then the distribution function of
the potentials is independent of the node capaci-
tances and is given by

P~V! 5
1
Z

expF2
K~V!

T G , (18)

where the pseudoenergy K~V! is equal to

K~V! 5 (
i51

n Vi
2

Rii
1

1
2 (

i51

n

(
j51

n ~Vi 2 Vj!
2

Rij
2 2 (

i51

n

IiVi.

(19)

~V! is the total power dissipated in the resistances
inus twice the total power taken from the grounded

urrent generators. For T 5 0, i.e., in the absence of
oise, property P1 is simply reduced to Maxwell’s
eat-dissipation theorem: The stationary general-

zed voltages are those that minimize K~V!. The
emonstration of Eqs. ~18! and ~19! comes mainly
rom simple electrical and statistical considerations
nd is given in Appendix 2.
A possible machine for the implementation of the
SR algorithm is shown in Fig. 12. It is composed of

wo interacting meshes, a four-connected-analog
oisy resistive network, and a locally interconnected
rray of digital–analog PEs. These two meshes, re-
pectively, implement the intensity and the boundary
elds. The analog’s resistive network works in a
urely asynchronous mode. It features switches
hat set or break connections between adjacent nodes
o implement the absence or presence of discontinui-
ies. Its principle of operation can be understood

Fig. 11. Node i of a resistive network described with the gener-
lized voltage coordinates. Rij and Vi denote the resistance of the

resistor linking nodes i and j and the voltage at node i, respectively.
uij and Ji are current source generators.
872 APPLIED OPTICS y Vol. 40, No. 23 y 10 August 2001
traightforwardly if we rewrite the pseudoenergy
~V! as

K~V! 5 (
i51

n ~Vi 2 RiiIi!
2

Rii
1

1
2 (

i51

n

(
j51

n ~Vi 2 Vj!
2

Rij

2 (
i51

n

RiiIi
2. (20)

The last term, which does not depend on the poten-
tials, is not relevant and can be incorporated into the
normalizing constant Z of Eq. ~18!. By reading the
generalized potentials in Eq. ~20! as node voltages
ncoding the continuous intensity field x, it is easily
hown that the steady-state potentials V of the resis-
ive network of Fig. 12 are samples of the multinor-
al distribution function defined by Eqs. ~2! and ~3!

or F 5 I. This holds, provided that

Rii 5 1, Rij 5 l22 ~i Þ j!, (21a)

Ji 5 yi, (21b)

nd independent Gaussian noise sources with vari-
nces Ty2 and l2~Ty2! are attached to the grounded
vertical! and the lateral resistors, respectively.

These noise sources are represented in Fig. 12 as

Fig. 12. Possible hybrid machine for implementation of the QSR
algorithm for F 5 I. It features two interacting meshes, an ana-
log noisy resistive network and a locally interconnected array of
stochastic PEs. The resistive network, which is mapped onto a
four-connected lattice of nodes, samples the intensity field at ther-
mal equilibrium; the mesh of PEs uses the Gibbs sampler to sam-
ple the boundary field. The hybrid machine has two basic cycles.
At fixed time intervals, the update of the binary variables li en-
oding the presence or absence of boundaries requires the mea-
urement ~large upward arrows! of the voltage difference between

the adjacent nodes of the resistive network and some local compu-
tation involving the current states of neighboring PEs. The up-
dated binary output is injected into the resistive network ~large
downward arrow! through the new state of the corresponding
switch, which sets or breaks the resistive connection between
nodes.
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shaded current generators. Following the results of
Subsection 4.A, we can implement them by attaching
a differential pair of phototransistors to every resis-
tor and by illuminating the resistive network with
speckle. According to Eq. ~14!, the mean illumina-
tion of the phototransistors attached to vertical resis-
tors has to be l2 times smaller than that of the
phototransistors attached to lateral resistors. In
practice, under a spatially uniform speckle, this can
be achieved by integration of phototransistors of dif-
ferent sizes, with l2 as the ratio of their area. The
data to be processed are incorporated into the resis-
tive network through current generators; see Eq.
~21b!. This incorporation can be achieved by imag-
ng of a spatial light modulator that is encoding the
ata onto photocurrent generators J. Or, as was
escribed in Subsection 4.B, the same phototransis-
ors may be used for the inputs of the speckle and of
he image to be processed. In this approach, gener-
tors J are useless, and the data are directly imaged
nto one of the two phototransistors used for the
mplementation of the Gaussian random sources at-
ached to the vertical resistors.

The sampling of the line field is obtained on a
ocally interconnected mesh of digital–analog
Es, each implementing the heat-bath criterion.
nce again, the use of clipped differential detection

f speckles may advantageously replace area-
emanding silicon digital random-number genera-
ors. The operation and implementation of this
esh are similar to those of the stochastic artificial

etina described in Subsection 4.B. The main differ-
nce comes from the force computation, which in-
ludes contributions from the resistive network
voltage differences between adjacent nodes! and
rom neighboring PEs ~the force that results from
otentials Vij!. If an interacting line process such as

that shown in Fig. 6 is considered, every PE has to be
connected to six neighbors, and the chromatic num-
ber for parallel computation is four. Unlike for the
Ising-spin model, the PE’s contribution to the force
does not depend linearly on the line variables. Its
implementation requires Boolean operations, which
may limit the PE’s integration density. The imple-
mentation of noninteracting line processes is much
easier because the force computation reduces to the
voltage differences between adjacent nodes and a
constant bias equal to a. In this case, no coloring is
required, and all the PEs can be updated in parallel.

With this type of design, we end up with a hybrid
machine that involves asynchronous-analog and
clocked-digital operations for the intensity and the
line fields, respectively. All random-number gener-
ation can be performed optically, producing three dif-
ferential phototransistor pairs per intensity site and
an additional pair per line site. PEs are updated
synchronously at clock time ti 5 1, 2, . . . . This up-
dating implies computing the forces, which in turn
involves the resistive network and neighboring PEs.
For a successful operation, the time interval Dt 5
ti11 2 ti has to be much larger than the RC relaxation
time of the resistive network. This ensures that the
voltages read by the digital–analog mesh of PEs will
effectively correspond to steady states of the resistive
network. The relaxation time of the resistive net-
work is difficult to evaluate, as it depends on the line
process configuration and on the temperature. Ba-
sically it is proportional to the area of the largest
smooth part of the network that has no discontinui-
ties. At high temperature, this area is rather small,
as many switches break connections between adja-
cent nodes. At low temperature, larger areas are
involved, but the voltage swings are lower. For all
practical purposes, the voltage changes induced by
the switches typically have to propagate a few nodes
away before the decay that is due to the grounded
resistors swamps them out, and the voltages at nodes
farther away will remain relatively unchanged. A
typical value for the relaxation time is a few hun-
dreds of nanoseconds.45 Thus a reasonable global
clock frequency for the system of Fig. 12 is 1 MHz. If
video-rate operation for the minimization is under-
taken, approximately 103–104 full iterations can be

erformed every 20 ms, depending on the coloring of
he edge field.

Clearly, the implementation of such a machine
ith up-to-date silicon technology is challenging. If
oninteracting line processes are considered, a mono-
hip integration is preferable, as it favors the inte-
ration density. For interacting line processes, a
onochip integration is risky, as the large voltage

wings of the digital electronic required for the edge
eld are likely to contaminate the nearly analog com-
utation. Thus a hybrid approach that relies on the
ntegration of several chips in digital and analog
MOS technologies is more appropriate. The diffi-
ulty in such a hybrid system lies in the implemen-
ation of the large number of connections required for
he interaction of the two meshes. With conven-
ional chip-to-substrate contacts along the perimeter
f a chip, time multiplexing has to be implemented,
nd the speed of the system is likely to be limited by
he inevitable bottleneck that one usually has to deal
ith in vision systems. With forthcoming packag-

ng technologies developed for multichip modules,
ontrolled-collapse chip connection processes will
onnect the chip directly to the substrate. Thus the
ontact density is proportional to the chip area.
ased on this board-scale integration, more than
0,000 connectionsycm2 are available,46 and the pros-

pects for implementing our proposal multichip sys-
tem may therefore improve.

5. Concluding Remarks

In this paper we have considered stochastic artificial
retinas that are able to implement stochastic relax-
ations on Markov random fields in early and middle
vision. These retinas are hybrid parallel machines
that mix optics and digital and analog electronics and
provide global optimizations at a video rate. They
can be used as single-circuit sensors dedicated to a
specialized application or as modular early-vision
modules that are assembled at the board level and
that are used as front-end processors for a variety of
10 August 2001 y Vol. 40, No. 23 y APPLIED OPTICS 3873
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vision applications. As an aid to better understand-
ing of the advantages and drawbacks of building such
dedicated machines, several aspects of their construc-
tion, including algorithms, computational efficiency,
parallelism, hardware, and architectures, have been
considered. Although all the numerical and experi-
mental examples covered in the paper are obtained
for the maximum a posteriori estimator, the results
for issues of algorithm and implementation are not
restricted to this estimator. Other, more local, esti-
mates that might provide better performance,14,47 for
instance, the maximizer of the posterior marginals,
can be straightforwardly considered.

Throughout the paper we have focused on the prob-
lem of image restoration in the presence of disconti-
nuities. In the more-general case, our results may
be applied to optimization problems defined by a
semiquadratic energy function. This function ex-
plicitly depends on a continuous field related to the
observed data and on an additional binary field that
explicitly encodes the presence or absence of some
qualitative property such as the presence of a bound-
ary. For this energy function we presented a rigor-
ous algorithm, called the quasi-static relaxation
algorithm, that induces stochastic relaxation in cou-
pled fields. For a fixed temperature, it samples con-
figurations at thermal equilibrium, i.e., under the
Gibbs distribution. When it is used with simulated
annealing, it provides maximum a posteriori esti-
mates. Its main attractive feature is that, when lo-
cal neighborhood structures are considered, as is the
case in most early-vision tasks, it fully exploits the
short-range interactions. Thus it can be imple-
mented with a high degree of parallelism. More-
over, the algorithm is efficient for conventional
workstations because sampling of the continuous
fields requires only the inversion of a sparse linear
system for which efficient inversion routines exist.

Considering restoration problems in one- and two-
dimensional image formats, we performed computa-
tions to test the algorithm’s overall performance.
More specifically, we successfully tested the ability of
the algorithm to perform sampling under conditions
of thermal equilibrium at a fixed temperature and to
compute global minima of the energy function. To
our knowledge, for interacting boundary fields that
reflect some basic constraints such as the absence of
ending, no rigorous deterministic algorithms exist,
and the QSR algorithm is one of the most efficient
algorithms at providing global estimates. The effect
on restoration performance of incorporating interact-
ing boundary fields into the energy function was
studied. Visual comparative results for synthetic
images clearly showed that models with interacting
boundaries enhance the restoration quality. For
simple reconstruction operators ~F 5 I!, enhance-

ent was observed for images strongly corrugated by
oise. We believe that more-complex problems,
uch as restoration with blur or tomographic recon-
truction, may benefit from interacting boundaries at
n intermediate noise level.
Implementing stochastic artificial retinas that pro-
874 APPLIED OPTICS y Vol. 40, No. 23 y 10 August 2001
ide video-rate operation was discussed. We intro-
uced the imaging of time-varying speckle patterns
nto silicon chips as an efficient tool for generating
andom numbers in VLSI circuits. Once they are
onverted into photocurrent, the speckles act as
ources of thermal noise for stochastic relaxation.
hese sources are nearly Gaussian, and, when they
re used with comparators, they provide an accurate
mplementation of the heat-bath criterion for sam-
ling binary Markov random fields. The feasibility
f building analog–digital machines that mix elec-
ronics and speckle random-number generators was
emonstrated, and the successful video-rate opera-
ion of a 24 3 24 smart VLSI sensor to minimize
sing-spin-like energy functions was validated.

An architecture for the implementation of the QSR
lgorithm was proposed. It relies on dedicated par-
llel circuits that use speckle random-number gener-
tors to implement the stochastic relaxation of both
elds. It guarantees the rigorous optimization of
everal estimators for both interacting and noninter-
cting line processes. This generality is obtained at
he expense of the integration of additional noise
ources to implement the stochastic samplings. In
ur opinion, the extra work involved in using this
rchitecture does not present a serious difficulty; ef-
cient solutions that are compatible with massive

ntegration and good statistical properties, such as
he differential detection of speckle, exist.

Stochastic artificial retinas do have two major
rawbacks with respect to conventional numerical
rocessors. As their successful integration depends
n dedicated analog computations, they are sensitive
o the inevitable drift and imprecision of analogs;
hey are not versatile, inasmuch as every implemen-
ation is tailored to a specific processing task.
learly, the architecture proposed in this paper is not
xempt from these two drawbacks; for instance, tak-
ng into account an eventual blur with a narrow sup-
ort would lead to a somewhat different and more-
omplex design. Not only would a network with
onger connections be required, but also integration
f resistors with negative resistances and control of
oreseeable network stability problems would have to
e achieved. Hybrid architectures that combine dig-
tal and analog computation, such as that of Fig. 12,
robably represent a good compromise that exploits
he flexibility of digital electronics without sacrificing
he net benefit to integration density of analog com-
utations. Although the successful operation of a
ybrid machine that implements the QSRelaxation
lgorithm is clearly a continuing challenge, perhaps
ne of the most important results of this paper is to
how that solutions exist for the implementation of
ptimal stochastic processing techniques in early-
ision problems. Stochastic artificial retinas repre-
ent a generic platform for building efficient vision
achines to operate over a large class of energy func-

ions and estimators. Moreover, they contribute to
educing the gap between sophisticated models de-
eloped by researchers on the one hand and dedicated
achines designed by engineers on the other, and
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they present promising prospects for the implemen-
tation of video-rate Monte Carlo–like computations.

Appendix A: Demonstration of Eq. ~8!

For simplicity, we denote by G the matrix FtF 1
l2Ml

tMl. From Eq. ~7! we have found that x is equal
o G21Fty 1 G21B wqs. Because the mean vector m

of x is equal to G21Fty @see Eq. ~6a!#, the covariance
matrix ~x 2 m!~x 2 m!t is simply G21Bwqs

~wqs!tBt~G21!t. Because wqs is a Wiener vector, the
product wqs~wqs!t is the identity matrix. Moreover,
as G 5 Gt and consequently ~G21!t 5 G21, covariance
matrix ~x 2 m!~x 2 m!t reduces to G21BBtG21.
Clearly, if B satisfies Eq. ~8!, the covariance matrix
becomes Ty2 G21, which is exactly the desired covari-
ance matrix C of Eq. ~6b!.

Appendix B: Demonstration of Eqs. ~18! and ~19!

We obtain the steady state of the network of Fig. 12
by writing Kirchhoff ’s current law. At node i we

ave

(
m51

n

LimVm 5 Ji 1 qi, (B1)

where the total random current qi is equal to ¥m51
n

umi and Lim equals 2~1yRim! for m Þ i and ¥p51
n 1yRip

for m 5 i. Note that, in Eq. ~B1!, capacitances at all
odes are not incorporated because they participate

n the transient response and not in the steady state.
his amounts to considering that the correlation time
f the Gaussian noise is much longer than the RC
esponse time of the network. In compact form, Eq.
B1! can be written as LV 5 J 1 q, where L is a real
ymmetric matrix formed by the coefficients Lim and

V, J, and q are n 3 1 vectors with coefficients Vi, Ji,
and qi. Let us denote by Q the covariance matrix of
he random variables qi. From Eq. ~17! and noting
hat uij 5 2uji, we find from simple linear algebra
hat

Q 5 ~Ty2!L. (B2)

From Eq. ~B1! it follows that the potentials V obey a
multinormal distribution with mean vector m 5 L21J
and covariance matrix ~Ty2!L21. Thus the distribu-
ion function P~V! of the potentials is given by

P~V! 5
1
Z9

expF2
1
T

~V 2 m!tL~V 2 m!G , (B3)

here Z9 is a normalizing constant and the super-
cript t denotes matrix transposition. It is easily
hown that the distribution function of Eq. ~B3! is
qual to that of Eq. ~18! for J~V! given by Eq. ~19!.
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