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We consider active polarimetric imaging systems that illuminate a scene with an incident polarization state
and project the backscattered light on another polarization state in order to produce a scalar intensity im-
age. We present and analyze a method for determining the configuration of illumination and analysis polar-
ization states that maximizes the observed contrast between a target and the background when the scene is
partially depolarizing and in the presence of additive Gaussian detection noise. © 2009 Optical Society of
America

OCIS codes: 260.5430, 030.4280.

We consider active polarimetric imaging systems
that illuminate a scene with an incident polarization

state defined by its Stokes vector S� and project the
backscattered light on another polarization state, de-

fined by its Stokes vector T� in order to produce a sca-
lar intensity image (see Fig. 1). This type of imaging
provides useful information about the scene and
makes it possible to discriminate objects that have
different polarization scattering properties. In this
Letter, we seek to optimize the contrast between two
regions in the scene that have different polarization
properties, such as a target of interest and a back-
ground. The degrees of freedom available to perform

this optimization are the polarization states S� and T� .
This issue is crucial in remote sensing and biomedi-
cal applications where only a single scalar image can
be recorded. It has been addressed for radar signals
perturbed by speckle noise [1,2] and for lidar detec-
tion of immersed targets by using different optimiza-
tion approaches [3].

Our purpose is to discriminate two regions a and b
whose polarimetric characteristics are described by
their Mueller matrices Ma and Mb. We use the Muel-
ler formalism [4], since we are interested in remote
sensing or biomedical applications, where scenes are
often highly depolarizing and the Jones formalism [4]
is inadequate. The scene is illuminated with purely

polarized light that can have any Stokes vector S� on
the Poincaré sphere (see Fig. 1) and is produced by a
polarization state generator. The Stokes vector scat-

tered by region a �b� is S� a=MaS� �S� b=MbS� �. The light
backscattered by the scene is analyzed with a gener-
alized polarizer whose eigenstate is the Stokes vector

T� . The measured intensities that correspond to re-
gion u=a or b are [4]

Iu =
1

2
�T� TMuS� �, �1�

where the superscript T denotes matrix transposi-
tion.

The appropriate expression of the contrast in an
image depends on the statistical properties of the
noise that perturbs it [5]. In this Letter, we will as-

sume that the noise is additive and Gaussian, since it
is a simple model, generally adequate for detection
noise. In the presence of additive Gaussian noise
with variance �2, an adequate expression of the con-
trast between regions a and b is [5]

C�S� ,T� � =
1

�2
�Ia − Ib�2 =

1

4�2
�T� TDS� �2, �2�

where D= �Ma−Mb�.
Our objective is to determine the Stokes vectors S�

and T� that maximize this contrast. Let f�x� be a sca-
lar function of a parameter x, which may be vectorial.
One has maxx�f�x��2= �maxx�f�x���2. To maximize

C�S� ,T� �, it is thus sufficient to determine the maxi-
mum and the minimum of the function

F�S� ,T� � = T� TDS� . �3�

To simplify equations, we will assume that S� has unit
intensity and use the following notation:

S� = �1

s�
�, T� = �1

t�
�, D = �D00 m� T

n� D̃
	 , �4�

where D̃ is a 3�3 matrix and s� and t� are three-
dimensional unit norm vectors. The function in Eq.
(3) can thus be written as

Fig. 1. (Color online) Principle of active scalar polarimet-
ric imaging. PSG, polarization state generator; PSA, polar-
ization state analyzer; IO, illumination optics; CO, collec-
tion optics.
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F�s�,t�� = D00 + s�Tm� + t�Tn� + t�TD̃s� . �5�

If the input light has intensity I0, the contrast

C�s� , t��= �I0 / �2��F�s� , t���2 is proportional to the square

of F�s� , t��.
To simplify computations, let us consider the singu-

lar value decomposition [6] of matrix D̃, which is in
general not symmetric:

D̃ = Y�XT, �6�

where � is a diagonal matrix whose values �i are
nonnegative and X and Y are orthogonal matrices.
Let us also define the following parameters:

u� = XTs�, v� = YTt�, p� = XTm� , q� = YTn� . �7�

After some computation, the function in Eq. (5) can
be written as

F�u� ,v�� = D00 + p� Tu� + v�T�q� + �u� �. �8�

Finding the minimum and the maximum of F�u� ,v��
under the constraint that 
u� 
2= 
v�
2=1 is an optimiza-
tion problem with four parameters. We will show in
the following that it can be reduced to a two-
parameter optimization problem, which results in a
significant acceleration of the computations and also
brings physical insight into the solution of the prob-
lem. Let us first consider that u� is fixed and deter-
mine the vectors v� that correspond to extrema of
F�u� ,v��. This is simply done by maximizing the scalar
product v�+�q� +�u� �. Taking the constraint 
v� 
 =1 into
account, one obtains two solutions:

v�+ =
q� + �u�


q� + �u� 

, v�− = − v�+. �9�

Simple computations show that these two solutions
lead to the following values of F:

F�u� ,v�+� = A�u� � + B�u� �, �10�

F�u� ,v�−� = A�u� � − B�u� �, �11�

with

A�u� � = D00 + p� Tu� , B�u� � = 
q� + �u� 
. �12�

Thus using the fact that B�0, one obtains the re-
duced contrast function

G�u� � = max
v�

��F�u� ,v���2� = ��A�u� �� + B�u� ��2. �13�

The value of v� that leads to the maximum is v�+ if
A�u� ��0 and v�− if A�u� ��0. If A�u� �=0, both vectors
lead to a maximum. In summary, the proposed algo-
rithm is the following:

• Determine u� opt=arg maxu��G�u� �� with numerical
optimization software.

• The optimal value of v� is

v�opt = sign�A�u� opt��
q� + �u� opt


q� + �u� opt

, �14�

where sign�x�=1 if x�0 and −1 otherwise, A�u� � is de-
fined in Eq. (12). If A�u� opt�=0, plus and minus signs
both correspond to an optimum.

• The optimal input polarization state is s�opt

=Xu� opt, and the optimal analysis state is t�opt=Yv�opt,
where X and Y are defined in Eq. (6).

Let us consider two particular cases where the so-
lution is a closed-form one that also brings physical
insight. The first one corresponds to m� =n� =0, which
happens when regions a and b have identical polari-
zance and diattenuation vectors [4]. In this case, it is
noticed in Eq. (8), that if �u� ,v�� is a solution then
�−u� ,−v�� also is. The function to maximize is �D00�
+ 
�u� 
. The solution is obvious: if �1 is the greatest
value of the diagonal matrix �, u� opt= �±1,0,0�T. Con-
sequently, s�opt is proportional to the right-side singu-
lar vector associated with the largest singular value

of D̃. The value of v�opt depends on the sign of D00. If
D00�0, that is, if the unpolarized intensity reflectiv-
ity of region a is larger than that of region b, then Eq.

(14) leads to v�opt=u� opt, that is, t�opt is the left-side sin-
gular vector associated to the largest singular value.
On the other hand, if D00�0, then v�opt=−u� opt, and

thus t�opt is opposite to what it was in the previous
case. This leads to an interesting interpretation: the

sign of t�opt is such that the intensity contribution to
the contrast, that is, D00, has the same sign as the po-
larimetric contribution to the contrast, that is,

t�opt
T D̃s�opt, so that the absolute value of the sum of both

Fig. 2. Reduced contrast function G���s ,�s� for 	=0.096.

Fig. 3. (Color online) Representation of s�opt (�) and t�opt (�)
for different values of 	 from 0 to 0.1 on the Poincaré
sphere. Arrows indicate increasing values of 	.
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terms is maximized. Finally, if D00=0, that is, regions
a and b have the same unpolarized intensity reflec-
tivity, and thus their contrast is only due to polari-

metric properties, both signs of t�opt lead to the same
optimal value.

Let us now consider the case where D̃=0, that is,
the two regions differ only by their polarization
and/or their diattenuation vectors. Equation (5)
shows immediately that if D00�0, then s�opt=m� / 
m� 

and t�opt=n� / 
n� 
, and if D00�0, then s�opt=−m� / 
m� 
 and

t�opt=−n� / 
n� 
. Here again, it is noticed that the polari-
metric contribution to contrast must have the same
sign as the intensity contribution.

Let us now consider a more general case where two
regions have the following Mueller matrices:

Ma = 
1 0 0 	

0 0.5 0 0

4	 0 0.3 0

− 	 0 0 0.4
� , �15�

where 	 varies between 0 and 0.1 and Mb

=diag�0.9,0.3,0.3,0.4�. We verified that all matrices
are physical Mueller matrices [7]. When 	=0, we are
in the first case considered above, that is m� =n� =0. As

D00�0, s�opt= t�opt= �1,0,0�T, which corresponds to a
linear horizontal state of polarization. When 	
reaches its maximum value of 0.1, one tends toward

the second case, that is D̃�0. In this situation, one

obtains s�opt�m� = �0,0,1�T and t�opt�n� / 
n

= �0,0.97,−0.24�T. For 0�	�0.1 we use the previ-
ously described algorithm to find the value of u� opt

that maximizes G�u� �. We show in Fig. 2 the value of
the reduced contrast function G���s ,�s�=G�u� � for 	
=0.096, where �s is the azimuth and �s the

ellipticity of the Stokes vector S�

= �1,cos 2�s cos 2�s ,sin 2�s cos 2�s ,sin 2�s�T. The
maximum is reached for �s=0° and �s=36.9°. In Fig.

3 we represent the evolution of s�opt and t�opt as a func-
tion of the parameter 	. At the beginning, that is 	
=0, they are identical, then s�opt evolves toward a left-

handed circular polarization, whereas t�opt tends to-
ward a right-handed, slightly elliptical state whose
azimuth is around 45°.

To illustrate these results, we have simulated in
Fig. 4 images of a square piece of material (charac-
terized by Ma with 	=0.096) on a background (char-
acterized by Mb). We compare different configura-
tions (see Table 1): linear copolarized (LCO), linear
cross-polarized (LCR), circular copolarized (CCO),
circular cross-polarized (CCR), and optimized (OPT).
We also compute the contrast for each situation with
Eq. (2). It is clearly seen that the optimized configu-
ration shows the best contrast (more than four times
higher than the others).

In summary, a method has been given to compute
the illumination and analysis polarization states that
optimize the contrast for region discrimination in ac-
tive polarimetric scalar images perturbed with addi-
tive Gaussian noise. A significant increase of the con-
trast can be obtained by adapting these states of
polarization to the two regions to discriminate. The
study of contrast optimization in the presence of
other types of noise, such as photon detection noise
[8], is an interesting perspective to this work, since
the optimal polarization states may be different in
this case.

The authors would like to thank the anonymous re-
viewers for comments and suggestions for improve-
ment that greatly improved the manuscript.
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Table 1. Configurations of

s� = „cos 2�s cos 2εs ,sin 2�s cos 2εs ,sin 2εs…
T and

t�= „cos 2�t cos 2εt ,sin 2�t cos 2εt ,sin 2εt…
T considered

in Fig. 4

�s� �s� �t� �t�

LCO 0° 0° 0° 0°

LCR 0° 0° 90° 0°

CCO 0° 45° 0° 45°

CCR 0° 45° 0° −45°

OPT 0° 36.9° 40.1° −6.9°

Fig. 4. Simulated images of a square piece of material (Ma with 	=0.096) on a background �Mb� with I0=30, �=10. Each
configuration is detailed in Table 1.
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