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A method is proposed to directly measure the temperature of a gas of weakly interacting fermionic atoms
loaded into an optical lattice. This technique relies on Raman spectroscopy and is applicable to experimentally
relevant temperature regimes. Additionally, a similar spectroscopy scheme can be used to obtain information on
the quasiparticle properties and Hubbard bands of the metallic and Mott-insulating states of interacting fermionic
spin mixtures. These two methods provide experimentalists with probes to accurately characterize fermionic
quantum gases confined to optical lattices.
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I. INTRODUCTION

Fermionic ultracold-atom physics has witnessed unprece-
dented experimental progress since a quantum degenerate
Fermi gas was first prepared in a three-dimensional optical
lattice [1]. The recent evidence for a fermionic Mott-insulating
state [2,3] serves as a clear example of these rapid advances.
However, despite all these breakthroughs, conducting exper-
iments with fermionic atoms still remains a major challenge
as very few probes are available to accurately characterize
these systems. Among all the difficulties encountered by
experimentalists, the lack of reliable methods to adequately
measure the temperature of Fermi gases confined to optical
lattices is often cited as one of the main obstacles.

Although this problem is quite persistent when lattice
systems are studied, the situation is much better in the
continuum, for which several techniques were successfully
implemented to estimate the temperature of both fermionic
and bosonic quantum gases [4–6]. In the presence of an optical
lattice, different schemes to determine the temperature have
been devised and experimentally tested for bosonic atoms.
One approach relies on the direct comparison of experimental
and theoretical time-of-flight images obtained from compu-
tationally expensive simulations [7]. In a second method, the
temperature is estimated from a measurement of the width of
the transition layer between two spin domains created by the
application of a magnetic field gradient [8]. Relying on the
good local resolution attainable in two-dimensional systems,
a third approach extracts temperature from the density [9].
Finally, detecting the temperature using bosonic impurity
atoms, which are insensitive to the optical lattice potential,
was put forward in [10].

The situation is much more difficult for fermionic atoms
loaded into an optical lattice. In current experiments, tempera-
ture measurements are usually performed before switching on
the lattice potential and after switching it off [2,3]. However,
since the temperature changes during the loading process,
detecting the system temperature with the optical lattice on

is of the utmost importance. Experimental attempts [11]
at evaluating the temperature of fermions inside a lattice
were based on the determination of the number of doubly
occupied sites. In this scheme, an accurate evaluation of the
temperature requires a full theoretical understanding of the
strong dependence of the number of doubly occupied sites
with temperature [12–14]. In addition, precise experimental
knowledge of the interaction strength, hopping amplitude,
trapping configuration, and particle number is needed. The
combination of all these requirements renders this approach
difficult to use. On the theoretical side, other methods were
proposed. For example, one could envisage, as proposed
in [15], extracting temperature from a generalized version
of the fluctutation-dissipation theorem used in conjunction
with the knowledge of both spatially resolved system den-
sity and density fluctuations. However, this approach needs
sufficiently strong density fluctuations as well as very good
local resolution, an experimental requirement that is far from
being met for fermionic systems. Finally, in one and two
dimensions, measuring the intensity of the light scattered off
the atomic lattice array was proposed to detect the system
temperature [16].

In this work, we propose a method to measure the tempera-
ture of fermions loaded into two- or three-dimensional optical
lattices. The approach we put forward relies on transferring a
portion of the atoms stored in the optical lattice potential to a
third hyperfine state using a stimulated Raman process. Hence,
the temperature measurement can be made either locally
or globally and can be used in parallel with other probes.
Depending on the experimental resolution, this thermometer
works for both free and weakly interacting fermions and only
requires the knowledge of the hopping amplitude of the system
under study. In addition, our approach can be implemented
using present fermionic ultracold-atom technology.

Measuring the temperature of fermionic gases loaded into
optical lattices is not the only difficulty faced by experi-
mentalists working with cold atoms. Indeed, identifying the
different strongly correlated phases that can be realized in these
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systems is also a demanding task. In comparison to condensed
matter systems, few probing techniques are available to study
cold-atom systems. In the absence of a lattice, spectroscopic
methods [4,5], including momentum-resolved radio-frequency
spectroscopy [6], were shown to be very efficient in probing
the characteristics of fermionic quantum gases. In contrast,
measuring the excitation spectrum of gases confined to optical
lattices was achieved experimentally only for bosonic systems
using Bragg spectroscopy [17–19]. Recently, it was suggested
that Raman spectroscopy can also be used to probe the
excitation spectrum of strongly correlated phases of Bose
gases confined to optical lattices [20,21] and to investigate
single-particle excitations in normal and superfluid phases
of fermionic gases [22–24]. In this article, we show that
Raman spectroscopy can be used to identify various signatures
of strongly correlated fermionic phases in optical lattices.
Experimentally detectable features include the presence of
quasiparticle peaks in weakly and strongly correlated liquids
as well as Hubbard bands in strongly correlated liquids and
Mott insulators.

The rest of the article is organized as follows: in Sec. II we
define the general setup for Raman spectroscopy. In Sec. III we
present the temperature detection scheme for noninteracting
(Sec. III A) and weakly interacting (Sec. III B) Fermi gases
confined to two- and three-dimensional optical lattices. Finally,
in Sec. IV we demonstrate that spectroscopy can also be used
to identify various signatures of strongly correlated systems.

II. SETUP AND THEORETICAL DESCRIPTION

The proposed detection schemes rely on Raman spec-
troscopy [22,23,25]. This probing technique consists of ex-
citing with a given energy and momentum a many-body state
formed of a mixture of two hyperfine states by transferring
atoms to a third state. To set the ideas straight, we sketch the Ra-
man process in Fig. 1. There we see that atoms from a hyperfine
state |1〉 are transferred to a different hyperfine state |3〉 using
two Raman laser beams with frequencies ω12 and ω23 and Rabi
frequencies �12 and �23, respectively. The frequencies ω12 and
ω23 are both detuned from their corresponding resonances to
state |2〉 to keep this state unoccupied. During the transition,
momentum q = k1 − k2 is transferred to the atoms. This value
can be chosen within certain bounds by appropriately adjusting

FIG. 1. (Color online) Atomic levels involved in the Raman
process. Atoms in hyperfine state |1〉 are transferred to state |3〉 using
two Raman laser beams with frequencies ω12 and ω23, respectively.
These frequencies are both detuned by � from their corresponding
resonances to state |2〉. States |1〉 and |3〉 are separated in energy
by εo

3 .

FIG. 2. (Color online) Geometric configuration of the two Raman
laser beams carrying momentum k1 and k2, respectively.

the angles between the two Raman beams and the lattice axis
(Fig. 2). For example, transferred momentum q = 0 could
be realized using copropagating Raman laser beams [here,
q = 0 is shorthand notation for q = (0,0) or (0,0,0)]. However,
for many current lattice setups, q ≈ (π

a
, π

a
) or (π

a
, π

a
, π

a
) could

be reached by aligning two counterpropagating Raman lasers
along the diagonal of the optical lattice axes.

Experimentally, the Raman signal is measured by counting
the number of atoms transferred to state |3〉. This signal can in
principle be resolved both in frequency and momentum. For
many applications, such as thermometry, momentum-resolved
measurements are not needed. Nevertheless, as we show in
Sec. IV, momentum resolution can also provide valuable addi-
tional information, but achieving good momentum resolution
in optical lattice setups is experimentally demanding.

When only a small fraction of the atoms in hyperfine state
|1〉 are transferred into state |3〉, the Raman signal can usually
be approximated by using a linear response expression [22,23].
Within a local density approximation, the Raman transition
rate is given by

Rq(ω) = 2π

h̄

∑
r

∫
dkW

q
k |�e(r)|2nF

(
εr

3,k − h̄ω − µo

)

×A
(
k − q,εr

3,k − µo − h̄ω; µr
)
. (1)

In this expression, εr
3,k = ε3,k + V3(r) and µr = µo − V1(r),

where ε3,k is the dispersion relation for state |3〉; V1,3(r) are
the trapping potentials felt by states |1〉 and |3〉, respectively;
and µo is the chemical potential in the center of the trap. The
momentum-dependent coefficient W

q
k is due to the Wannier

envelope and is given by

W
q
k =

∣∣∣∣
∫

drw∗
1(r)ψ3,k(r)e−iq·r

∣∣∣∣
2

=
∣∣∣∣
∫

dru∗
1,k(r)u3,k−q(r)

∣∣∣∣
2

, (2)

where w1(r) is the Wannier function for the atoms in state
|1〉 while ψ3,k(r) is the Bloch function for the atoms in
state |3〉 (u1,k,u3,k are the corresponding periodic parts of the
Bloch function); nF (x) = 1/{1 + exp[x/(kBT )]} is the Fermi
function; and A(k,h̄ν; µr ) is the one-particle spectral function
for the (|1〉,|1′〉) mixture in a confining potential. The local
density approximation has been used, so that µr is the local
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chemical potential at point r. In a homogeneous system, the
spectral function is defined as

A(k,h̄ν) =
∑
i,f

e−Ēi /kBT + e−Ēf /kBT

Z

× |〈φf |c1k|φi〉|2δ(h̄ν + Ēf − Ēi), (3)

where c1k destroys an atom in state |1〉 with momentum
k, Z = ∑

i exp(−Ēi/kBT ) is the grand canonical partition
function, the sums over i and f refer to all the many-body
states of the system, and the energy Ēi = Ei − µNi is rescaled
by the number of particles. Finally, h̄ω = h̄(ω12 − ω23) is
the transferred energy, and the Rabi frequency is �e(r) =
�12(r)�∗

23(r)/�, where � is the detuning. Local resolution
of the Raman transfer could be obtained by using a special
configuration of laser beams [23].

From Eq. (1), we see that for a given position and momen-
tum the Raman spectrum is obtained from the multiplication
of two functions. The first function is the Fermi factor nF ,
which depends strongly on temperature but is independent of
other parameters apart from µo and T itself. As shown in
Sec. III, our temperature detection scheme relies primarily on
this observation. The second function entering Eq. (1) is the
spectral function, which depends sensitively on the state of
the system. We see that this limits somewhat the possibility
of a universal temperature determination; but, as explained in
Sec. IV, this function provides valuable information on the
phase of the system.

Throughout the rest of this article, we describe quantum
gases confined to optical lattice potentials using the fermionic
Hubbard model [26,27]:

H = −J
∑

〈r,r ′〉σ
(c†σrcσr ′ + H.c.) + U

∑
r

n̂1r n̂1′r −
∑
rσ

µr n̂σr ,

(4)

where c
†
σr and cσr are the creation and annihilation operators

of the fermions with σ = {|1〉,|1′〉}, J is the hopping matrix
element, U is the on-site repulsion, µr is the local chemical
potential, n̂σ r = c

†
σrcσr is the number operator on site r , and

〈r,r ′〉 denotes neighboring lattice sites.

III. TEMPERATURE DETERMINATION

In this section, we present a method to evaluate the
temperature of weakly interacting fermions confined to optical
lattices by measuring their Raman spectrum. We first present
this method considering noninteracting fermions in two- and
three-dimensional optical lattices. Afterward, we demonstrate
how this procedure is also applicable to weakly interacting
fermionic gases loaded into optical lattices.

A. Temperature extraction for noninteracting fermions

For the case of noninteracting fermions (i.e., U = 0),
the spectral function for trapped |1〉 atoms is A(k,h̄ν; µr ) =
δ(h̄ν + µr − ε1,k). In our study, we assume that both |1〉 and
|3〉 atoms are trapped by the same harmonic potential (i.e.,
V1 = V3 = VT ) and are loaded into an optical lattice which
is felt equally by both hyperfine states (i.e., induces the same
hopping coefficients), such that ε1,k = ε3,k − εo

3 ≡ εk. Here

FIG. 3. (Color online) Left: Raman transfer with q = 0; atoms
can only be transferred from state |1〉 to state |3〉 with frequency ω =
εo

3/h̄. Right: Raman transfer with q = π/a; atoms can in principle be
transferred from state |1〉 to state |3〉 with frequencies ranging from
(εo

3 − 2D)/h̄ to (εo
3 + 2D)/h̄, where D is the half-bandwidth; ε1,k

and ε3,k are the dispersions of states |1〉 and |3〉, respectively; µ is the
chemical potential for the mixture of states |1〉 and |1′〉; and εo

3 is the
energy shift of |3〉 compared to |1〉.

εo
3 is the energy offset of state |3〉 with respect to state |1〉

(cf. Fig. 1). These assumptions are valid as long as we
use adequate hyperfine states and confine the atoms into
far-detuned optical lattices. Under these conditions, the Raman
transition rate is given by

Rq(ω) = 2π

h̄

∑
r

∫
dkW

q
k |�e(r)|2

× nF

(
εo

3 − h̄ω + εk + VT (r) − µo

)

× δ
(
εo

3 − h̄ω + εk − εk−q
)
. (5)

This expression depends on temperature only through
the Fermi function nF . Therefore, detecting the system
temperature can be done reliably by fitting Rq(ω) with a
minimum of parameters. From Eq. (5), one also sees that the
frequency spread of the Raman signal is strongly dependent on
the chosen transferred momentum, q. As shown in Fig. 3, for
a homogeneous system, atoms can only be transferred from
state |1〉 to state |3〉 with energy h̄ω = εo

3 if q = 0. Hence,
Rq=0(ω) is strongly peaked at εo

3/h̄ and zero everywhere
else [28]. This feature makes it impossible to detect the
system temperature using q = 0 because the Raman signal
is too narrow in ω. What we need is a Raman signal that is
nonzero for a wide range of frequencies. This is achieved
if q = (π

a
, π

a
) for square lattices and q = (π

a
, π

a
, π

a
) for cubic

lattices. As we can see in Fig. 3, for these two configurations,
since εk−q = −εk, atoms can in principle be transferred with
energies ranging from εo

3 − 2D to εo
3 + 2D, where D is the

half-bandwidth. Therefore, temperature measurements can
be done with this choice of transferred momentum. We use
the shorthand notation q = π/a to specify that we use these
configurations. We also note that since we are interested in the
momentum-integrated Raman rate, W

q=π/a

k can be neglected
without loss of generality for sufficiently deep lattices as this
factor only affects the overall signal amplitude [29].

In the remainder of this section, we demonstrate that Raman
spectroscopy can adequately be used as a thermometer. We
conduct this demonstration in two steps. First, using Eq. (5),
we numerically simulate a Raman experiment in which the
probing lasers are shone on the whole system of atoms
confined to a lattice and trapped in a harmonic potential. These
simulations show that the resulting spectra vary significantly
with temperature. Then, as a second step, we fit the obtained
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signal using two different fitting functions. The first is the full
continuum-space expression for the Raman rate (valid for large
systems):

Rπ/a(ω̃)

N
∝ C

ρ
gv

(
h̄ω̃

2

) ∫ µo

−∞
dµ

(µo − µ)(d−2)/2

1 + e−(h̄ω̃/2+µ)/(kBT )
. (6)

In this expression, h̄ω̃ = h̄ω − εo
3, gv(ε) ≡ 1

V

∑
k δ(ε − εk) is

the density of states of the band, d is the dimension of the
system, V is its volume, and C = 2π |�e|2/h̄. As we use the
local density approximation, the Raman rate per particle only
depends on the particle number and the trapping potential
through the characteristic particle number ρ = N (VT /D)d/2,
where N is the total number of atoms in the hyperfine mixture
(|1〉,|1′〉). We are left with only three fitting parameters: the
temperature T ; the chemical potential at the center of the trap
µo; and an overall multiplicative factor. The second fitting
function is the simplified expression

Rπ/a(ω̃) ∝ gv(h̄ω̃/2)e(h̄ω̃/2kBT ). (7)

This approximate expression, which has only temperature
and a prefactor as fitting parameters, is only valid in certain
parameter regimes; however, it has the advantage of being very
simple.

In the following, we show that the values of temperature
and central chemical potential obtained through this fitting
procedure agree very well with the initial system parameters.
This means that each Raman spectrum is to a good extent
uniquely defined by its temperature and chemical potential in
both two and three dimensions.

1. Noninteracting fermions in two dimensions

Let us first look at Raman spectra for a two-dimensional
system with fixed characteristic particle number ρ = 2 and
varying temperatures. These spectra are shown in Fig. 4. From
this figure, one can see that all spectra can be broken down
into two parts. For large ω̃, each spectrum is characterized
by a signal of large amplitude whose shape depends on the
system parameters while, for small ω̃, each spectrum presents

−2 −1 0 1 2
0

0.1

0.2

0.3

    (hω − ε
3
)/4J

R
π/

a/V
N

C

(k
B
T/4J)

s
 = 1

(k
B
T/4J)

f
 = 0.95

(k
B
T/4J)

s
 = 0.1

(k
B
T/4J)

f
 = 0.095

(k
B
T/4J)

s
 = 0.5

(k
B
T/4J)

f
 = 0.467

o

FIG. 4. (Color online) Raman spectra for three different tem-
peratures (kBT /4J = 0.1, 0.5, and 1) at the characteristic particle
number ρ = 2 in a two-dimensional system; (kBT /4J )s is the exact
temperature while (kBT /4J )f is obtained by fitting the spectra to
Eq. (8).

−2 −1 0 1 2
0

0.1

0.2

0.3

0.4

    (hω − ε
3
)/4J

R
π/

a/V
N

C

ρ = 8

(k
B
T/4J)

f
 = 0.166

ρ = 1

(k
B
T/4J)

f
 = 0.095

ρ = 5

(k
B
T/4J)

f
 = 0.118

ρ = 2

(k
B
T/4J)

f
 = 0.095

o

FIG. 5. (Color online) Raman spectra for four different char-
acteristic particle numbers ρ = 1, 2, 5, 8 at fixed temperature
kBT /4J = 0.1 in a two-dimensional system; (kBT /4J )f is obtained
by fitting the spectra to Eq. (8). Note that the case where the fit does not
provide an accurate determination (ρ = 8) corresponds to an almost
filled band at the trap center, with few available thermally excited
states.

a tail whose shape is mainly set by temperature. The peak
or discontinuity at ω̃ = 0 is due to the Van Hove singularity
of the square lattice density of states. The presence of sharp
edges at h̄ω̃/4J = {−2,2} is due to the abrupt ends of the
square lattice density of states. At low temperatures, most
of the spectral weight is located at ω̃ > 0 with a sharp step
around ω̃ ≈ 0 (cf. kBT /4J = 0.1). As the system temperature
is increased, some weight is transferred into the tail and
the step broadens considerably. This broadening stems from
the smoothening of the Fermi function with increasing tem-
perature. For high temperatures, the left end of the spectrum
becomes sharp as it is cut by the edge of the density of states.

Figure 5 shows the dependence of Raman spectra with
varying characteristic particle numbers at a fixed temperature.
For small ρ, most of the weight is located in the bulk of
the spectrum (ω̃ > 0), whereas, at higher ρ, more and more
weight shifts into the tail. For very large characteristic particle
number, the left edge of the spectrum is located at the end of
the ω̃ window allowed by the support of the density of states
and not where the Fermi function goes to zero.

From the preceding descriptions, it is clear that the Raman
spectra strongly depend on temperature and particle density.
We exploit this strong dependence by fitting these Raman
spectra to an integrated version of Eq. (6):

R2D
π/a(ω̃)

N
∝ T

ρ
gv(h̄ω̃/2) ln[1 + e(h̄ω̃/2+µo)/kBT ]. (8)

From this fit, we extract the temperature and central chemical
potential of a two-dimensional system. The values obtained
agree very well with the initial system parameters. We
summarize the accuracy of the fitted parameters in Fig. 6.
In the upper panel, we see that, aside from small deviations,
the temperature can be determined very accurately by this
procedure and is in most cases well within 10% of its true
value. The middle panel shows that the chemical potential
in the center of the trap can also be evaluated. Even though
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ρ

FIG. 6. (Color online) Accuracy of detected temperatures and
central chemical potentials. These detected values were obtained
by fitting each full spectrum with Eq. (8). Upper panel: detected
temperatures are denoted by (blue) dots and exact temperatures by
solid (black) lines. Each shaded region corresponds to a 10% range
centered on the exact temperature and contains most fitted points.
The regions delimited by dashed lines correspond to a 20% range.
Middle panel: central chemical potentials are denoted by (blue) dots,
exact values by (red) “×”. Lower panel: density at the center of the
trap, no.

its accuracy is not as good as for temperature, it still agrees to
within 20% for most of the simulated systems. Therefore, from
the knowledge of experimentally measurable Raman spectra,
we can accurately determine the temperature and obtain a
good estimate of the chemical potential at the center of the
trap for a free fermionic gas confined to a two-dimensional
optical lattice. Let us point out that here we assumed that the
hopping amplitude in the optical lattice, J , is known. However,
as explained earlier, J sets the support of the spectra at high
fillings and can therefore be experimentally detected as a bonus
by Raman spectroscopy measurements.

In many cases a much simpler fitting procedure can already
give very good results for the temperature. This simplified
method focuses on the behavior of the low-frequency part of
the Raman spectrum tail. In Fig. 7, the Raman spectrum is
shown on a logarithmic scale in order to emphasize its tails.
Looking back at the analytical expression given by Eq. (8),
we see that if e(h̄ω̃/2+µo)/kBT is small the Raman signal can be
approximated by

R2D
π/a(ω̃) ∝ gv(h̄ω̃/2)e(h̄ω̃/2kBT ). (9)

This simplified expression can be used as long as its validity
extends over a sufficiently large region of measurable signal,
that is, if e(h̄ω̃/2+µo)/kBT 	 1 for a wide range of h̄ω̃/4J ∈
[−2; 2]. This condition is most easily fulfilled for small or even
negative µo. Hence, this simplified fitting procedure holds
best for small and intermediate characteristic densities. These
limitations are quite apparent in Fig. 7. For example, increasing
the characteristic density increases the signal in the tail but
drastically reduces the region over which the fitting procedure
works. For ρ = 5, even at kBT /4J = 0.1, only a very small
region is left. The same behavior is also observed at larger
temperatures. In fact, the good fitting region completely drops
off the spectrum at large temperatures and large characteristic

−2 −1 0 1 2
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T/4J)

f
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FIG. 7. (Color online) Raman spectra in logarithmic scale for
four different characteristic particle numbers (ρ = 1, 2, 5, 8) at fixed
temperature kBT /4J = 0.1 in a two-dimensional system; (kBT /4J )f
is obtained by fitting the tails of the spectra to Eq. (9).

densities as this region would appear outside h̄ω̃/4J ∈ [−2; 2],
the range permitted by the density of states. The resulting
accuracy of the simplified fitting procedure is summarized for
different system parameters in Fig. 8. Here the simplified fit
works very well for the lowest values of ρ, whereas for larger
characteristic densities the temperature is overestimated.

2. Noninteracting fermions in three dimensions

Let us now look at Raman spectra for atoms confined to
a cubic lattice. For fixed characteristic particle number and
various temperatures, typical signals are shown in Fig. 9. At
low temperatures, these spectra show a main peak and a tail
that quickly goes to zero. For increasing temperatures, the
structure of the cubic density of states becomes more apparent
as weight shifts toward the tail. This change in the shape
of the Raman spectrum is due to the Fermi function, whose
spread increases with temperature. In Fig. 10 the evolution

  0
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 0.4   1   2 3.2   5   8 0.4   1   2 3.2   5   8 0.4   1   2 3.2   5   8
  0

  1

  2

n  o

ρ

FIG. 8. (Color online) Accuracy of detected temperatures ob-
tained by fitting the tail of each spectrum with Eq. (9). Upper
panel: detected temperatures are denoted by (blue) dots and exact
temperatures by solid (black) lines. Each shaded region corresponds
to a 30% range centered on the exact temperature and contains most
fitted points. The regions delimited by dashed lines correspond to a
20% range. Lower panel: density at the center of the trap.
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FIG. 9. (Color online) Raman spectra for three different tempera-
tures (kBT /6J = 0.1, 0.5, 1) at a fixed characteristic particle number
ρ = 2.5 in three dimensions; (kBT /6J )s is the exact temperature
while (kBT /6J )f is obtained by fitting each spectrum up to its peak
with Eq. (10).

of the spectra with increasing characteristic particle number,
ρ, is shown at low temperature. For intermediate filling, the
Raman spectrum presents its characteristic tail whose size
depends strongly on temperature. At very large filling, the
tail cannot be followed until its end as the Raman spectrum is
limited by the frequency window allowed by the cubic density
of states.

In three dimensions, we can also extract the temperature
from the measured signal. In this case, the Raman rate in the
continuum approximation is given by

R3D
π/a(ω̃)

N
∝ gv(h̄ω̃/2)

ρ

∫ µo

−∞
dµ

(µo − µ)1/2

1 + e−(h̄ω̃/2+µ)/(kBT )
. (10)

By fitting three-dimensional spectra with Eq. (10), we checked
that the temperature and central chemical potential are, to
a good degree, uniquely defined for a given spectrum. The
quality of the extracted temperature and central chemical
potential values are summarized in Fig. 11. We find very good
agreement between the input and extracted temperatures if the
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FIG. 10. (Color online) Raman spectra for three different char-
acteristic particle numbers (ρ = 0.5, 2.5, 10) at fixed temperature
kBT /6J = 0.1 in three dimensions; (kBT /6J )f is obtained by fitting
each spectrum up to its peak with Eq. (10).
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FIG. 11. (Color online) Accuracy of detected temperatures and
central chemical potentials. These detected values were obtained
by fitting each spectrum up to its peak with Eq. (10). Upper
panel: detected temperatures are denoted by (blue) dots and exact
temperatures by solid (black) lines. Each shaded region corresponds
to a 10% range centered on the exact temperature and contains most
fitted points. The regions delimited by dashed lines correspond to a
20% range. Middle panel: detected central chemical potentials are
denoted by (blue) dots, exact values by (red) “×”. Lower panel:
density at the center of the trap.

fit is done from ω̃min to the ω̃ value corresponding to the peak
of the spectrum. However, fitting over the whole spectrum
is not as successful because more importance is given to the
rightmost portion of the signal, which is not as sensitive to
temperature as the tail. Using the reduced fitting range, the
temperature can be determined to within 10% uncertainty.
The chemical potential at the center of the trap can also be
determined. However, the agreement between the input and
extracted values decreases with increasing temperature.

Considering only the tail of the spectrum, a simplified
fitting procedure can also be used to evaluate the temperature
of a three-dimensional gas. Looking back at the analytical
expression given by Eq. (10), we see that if e(ω̃/2+µo)/kBT is
small [30] the Raman signal can be approximated by

R3D
π/a(ω̃) ∝ gv(h̄ω̃/2)e(h̄ω̃/2kBT ). (11)

As in the two-dimensional case, we expect this expression to
be accurate for small or even negative values of µo and small
h̄ω̃/6J ∈ [−2; 2]. In Fig. 12, we apply this simplified fitting
method to spectra with various characteristic particle numbers.
For small values (ρ = 0.5, 2.5), the fit works nicely over a
wide range of frequencies. In contrast, for larger values of ρ,
the range over which the simplified expression can be fitted
becomes very small or nonexistent. In Fig. 13, the extracted
temperatures are compared to the input temperatures. As
expected, the procedure works well for small and intermediate
characteristic particle numbers. In contrast, for large values of
ρ, this method overestimates the system temperature.

Finally, to conclude this section, we need to point out that
the frequency resolution attainable in experiments may not be
as good as assumed here. Therefore, we checked that the fitting
procedure still works for a reduced frequency resolution by
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FIG. 12. (Color online) Raman spectra in logarithmic scale for
three different characteristic particle numbers (ρ = 0.5, 2.5, 10) at
fixed temperature kBT /6J = 0.1 in three dimensions; (kBT /6J )f is
obtained by fitting the tails of the spectra to Eq. (11).

binning the simulated spectra. For two-dimensional systems,
the temperature extraction method still works surprisingly
well. The temperature can be determined very accurately even
if only a few points are left on the spectrum (h̄�ω̃/4J = 0.8).
In three dimensions, the fitting procedure still works for a
frequency resolution of about h̄�ω̃/6J = 0.4.

B. Fermions with (moderate) interactions: Thermometry from
the wings of the density profile

When atoms in the (|1〉,|1′〉) mixture interact via a finite
interaction strength U , the structure of the Raman spectrum
changes significantly due to weight redistribution in the
spectral function (cf. Sec. IV). However, up to intermediate
interaction strengths, the low-density region on the periphery
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FIG. 13. (Color online) Accuracy of detected temperatures ob-
tained by fitting the tail of each spectrum with Eq. (11). Upper
panel: detected temperatures are denoted by (blue) dots and exact
temperatures by solid (black) lines. Each shaded region corresponds
to a 30% range centered on the exact temperature and contains most
fitted points. The regions delimited by dashed lines correspond to a
20% range. Lower panel: density at the center of the trap.
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FIG. 14. (Color online) Density cut through (x,0,0) for an
interacting system at U/6J = 2, kBT /6J = 0.1, and ρ = 8.9. Below
n = 0.3, the interacting and Hartree-corrected density profiles agree
quite well. The shaded region (x > 30) corresponds to the probed
area; this region contains 0.4% of the total atom number.

of the trap is still well described by a system of noninteracting
fermions. Thus, this region can be used to extract the gas tem-
perature, assuming the system is in thermal equilibrium. The
experimental feasibility of the detection of a small boundary
region has been shown using radio-frequency spectroscopy for
an imbalanced Fermi mixture and has been used to detect the
temperature in the absence of an optical lattice potential [31].
In contrast to our proposal, the boundary region in that case
was only occupied by the majority component so the Fermi
gas in the wings was clearly noninteracting. Figures 14 and
15 show density profiles, obtained from dynamical mean-field
calculations, for two three-dimensional interacting systems.
We compare these profiles to those calculated by using local
density approximation and the simple Hartree approximation
for the relation between the density n and the chemical
potential µ. The Hartree approximation simply amounts to
inverting the relation: µ = µU=0(n) + U

2 n, where µU=0(n) is
the chemical potential of the free system for a given density
n. As one can see from these figures, the interacting and
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FIG. 15. (Color online) Density cut through (x,0,0) for an
interacting system at U/6J = 2, kBT /6J = 0.5, and ρ = 8.9. Below
n = 0.3, the interacting and Hartree-corrected density profiles agree
quite well. The shaded region (x > 31) corresponds to the probed
area; this region contains 1.4% of the total atom number.
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FIG. 16. (Color online) Raman spectrum obtained by only
collecting signal from the low-density region shown in Fig. 14.
The system exact temperature is kBT /6J = 0.1 while the detected
temperature obtained through a fit of Eq. (12) is (kBT /6J )f = 0.102.

Hartree-approximated profiles agree quite well for n < 0.3,
whereas the profiles are considerably different for larger
densities. Hence, by only probing the region at the periphery
of the trap, we can detect the system temperature as the atoms
at these locations are still described by a quasi-non-interacting
model. The validity of this approximation is further evidenced
in Sec. IV. Two examples of Raman spectra obtained by
collecting Raman signals coming from one of the six “semi-
spherical” regions of low density are shown in Figs. 16 and
17. These Raman spectra are simulated using Eq. (5), where
the sum over positions is limited to one of the six low-density
regions and the central chemical potential, µo, is the one setting
the correct atom number in the interacting system. To show
that the temperature can still be well detected in this limit, we
fit these spectra using the continuum Raman expression:

Rπ/a(ω̃)

N
∝ gv(h̄ω̃/2)

ρ

∫ π
2

0

∫ ∞

α

cos2 φ

dx sin φdφ

×
√

x

1 + e−(h̄ω̃/2+µo−x)/(kBT )
. (12)
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FIG. 17. (Color online) Raman spectrum obtained by only
collecting signal from the low-density region shown in Fig. 15.
The system exact temperature is kBT /6J = 0.5 while the detected
temperature obtained through a fit of Eq. (12) is (kBT /6J )f = 0.517.

In this expression, where the spatial integral is limited to
the probed region, there are only three fitting parameters:
the temperature, the central chemical potential, and α, a
parameter related to the size of the probed region [32]. As
shown in Figs. 16 and 17, the system temperature can be
measured successfully using this procedure.

IV. SPECTRA FOR INTERACTING FERMIONS:
FROM STRONGLY CORRELATED FERMI LIQUIDS

TO MOTT INSULATORS

In this section we discuss the structure of the Raman spec-
trum in different strongly correlated states. We present general
considerations based on the separate spectral contributions
of quasiparticle excitations and of incoherent high-energy
excitations. These considerations are illustrated by explicit
calculations for the Hubbard model with repulsive interactions,
treated in the framework of dynamical mean-field theory
(DMFT) [33]. The DMFT calculations are performed using
the numerical renormalization group method as an impurity
solver [34]. The weakly correlated regime, strongly correlated
Fermi liquid, and Mott-insulating regimes are discussed.

For simplicity, we focus on a homogeneous system,
corresponding to Raman spectroscopy being performed in a
local manner [23] and probing deep inside the bulk of a certain
quantum state to avoid the influence of a neighboring state
with different character [35]. We also restrict our discussion
to the paramagnetic phase, and the calculations are performed
at zero temperature (although some qualitative remarks are
made on finite-temperature effects). The possible use of Raman
spectroscopy to detect and investigate the magnetically ordered
phase is left for future work.

We focus in this section on zero momentum transfer, q = 0.
This is in contrast to the previous section, in which we used
q = π/a in order to spread the signal as much as possible to
probe thermally excited states. Here, on the contrary, we want
to separate and resolve the different spectral features (e.g.,
quasiparticles and Hubbard bands) as well as possible, and
for this q = 0 is more favorable [36]. We focus both on the
momentum-resolved spectrum (i.e., after time of flight) and
on the momentum-integrated signal (the latter being easier to
achieve experimentally in the lattice) related to the spectral
function A(k,h̄ν) [37] by

Rq=0(k,ω) = CnF

(
εo

3 − h̄ω + εk − µ
)

×A
(
k,εo

3 − h̄ω + εk − µ
)
, (13)

Rq=0(ω) = C

∫
dk nF

(
εo

3 − h̄ω + εk − µ
)

×A
(
k,εo

3 − h̄ω + εk − µ
)
. (14)

We recall that, in these expressions, εo
3 + εk is the dispersion of

the outcoupled state |3〉, while µ is the chemical potential of the
interacting (|1〉,|1′〉) mixture. From Eq. (1), the prefactor reads
C = 2π |�e|2/h̄ (we note that the Wannier matrix element
W

q=0
k = 1, assuming the same lattice potential for state |1〉

and |3〉).
When specializing for DMFT calculations, the self-energy,

, only depends on frequency, so the spectral function
πA(k,h̄ν) ≡ −Im{1/[ h̄ν + µ − εk−( h̄ν + i0+)]} depends
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on momentum through εk only. In this case, the momentum
integration can be replaced by an integration over the density
of states, gv(ε), associated with the dispersion εk (for sim-
plicity, the following DMFT calculations are performed for a
semicircular density of states):

Rq=0(ω) = CV

∫
dεgv(ε)nF

(
εo

3 − h̄ω + ε − µ
)

×A
(
k,εo

3 − h̄ω + ε − µ
)
. (15)

At T = 0, the Fermi function in these expressions limits the
integration domain to momenta such that ε < µ + h̄ω − εo

3.
We note that these spectra obey the following sum rules,

valid at arbitrary temperature T :∫
dωRq=0(k,ω) = Cn1(k),

∫
dωRq=0(ω) = CN/2. (16)

Hence, the total intensity of the momentum-resolved signal is
proportional to the momentum distribution n1(k) ≡ 〈c†1kc1k〉
of particles of type |1〉 in the system, while the total intensity
of the momentum-integrated signal is proportional to the total
number of particles N/2 in state |1〉. In these expressions, the
frequency integration is over the whole range of frequencies
where the signal is nonzero (this range is bounded from below,
as shown later).

Let us first discuss the shape of the Raman spectrum in the
simple case of a noninteracting system for which A(k,h̄ν) =
δ(h̄ν + µ − εk). We obtain in this case

RU=0
q=0 (k,ω) = Cδ

(
h̄ω − εo

3

)
nF (εk − µ),

(17)

RU=0
q=0 (ω) = C

N

2
δ
(
h̄ω − εo

3

)
.

Hence, at q = 0 and in the absence of interactions, Raman
transitions only exists at the frequency h̄ω = εo

3. This is due
to the assumption that the dispersions for the atoms in the
(|1〉,|1′〉) mixture and in the outcoupled state |3〉 are the
same (cf. Fig. 3). At T = 0, the momentum-resolved signal
is nonzero only for momenta inside the Fermi surface εk < µ

because this spectroscopy probes only occupied states. At
T �= 0, the signal extends beyond the Fermi surface because
of thermal broadening according to the Fermi function. These
simple considerations are nicely illustrated by the spectra
displayed in Figs. 18 and 19. These results correspond to the
Hubbard model with a very low density of particles per site
(n ≈ 0.18, dilute system) and a very high density of particles
per site (n ≈ 1.82, or low density of holes in a band insulator),
respectively. Despite the fact that these DMFT calculations
were made for a rather high value of U/D = 3.5 (with D

the half bandwidth), the system is in effect weakly correlated
because the density of particles (or holes) is small. This is
clearly seen from the displayed momentum-resolved spectral
functions [Figs. 18(b) and 19(b)] as they are weakly modified
as compared to the noninteracting case. Both spectra show a
very sharp peak which disperses essentially according to the
free dispersion εk (only a shift in position is shown). Hence,
the Raman spectra are closely following the noninteracting
behavior: the momentum-integrated spectra [Figs. 18(c) and
19(c)] are sharply peaked, and the momentum-resolved Raman
spectra [Figs. 18(a) and 19(a)] have very little momentum
dispersion (in contrast to the spectral function itself) and are
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FIG. 18. (Color online) Spectra for a low-density liquid (µ/D =
−0.75, U/D = 3.5, and n ≈ 0.18): (a) momentum-resolved Raman
spectrum (in arbitrary units), (b) momentum-resolved spectral func-
tion (in arbitrary units), (c) momentum-integrated Raman spectrum,
and (d) momentum-integrated spectral function.

suppressed for momenta outside the Fermi surface. Due to
this narrow momentum dispersion, a very sharp peak occurs
in the momentum-integrated Raman spectra [Figs. 18(c) and
19(c)] (the peak position is discussed later). Let us emphasize
that these findings further support the detection scheme for
interacting particles presented in Sec. III B, which relies on
the assumption that in the low-density regions the spectral
function behaves like the one of the noninteracting particles.

We now turn to spectra in which effects of strong cor-
relations become more pronounced. In order to discuss these
spectra on a general basis, we can separate the spectral function
into a contribution from quasiparticles and a contribution from
high-energy incoherent excitations:

A(k,h̄ν) = Aqp(k,h̄ν) + Ainc(k,h̄ν). (18)
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FIG. 19. (Color online) Spectra for a high-density liquid (µ/D =
4.25, U/D = 3.5, n ≈ 1.82): (a) momentum-resolved Raman spec-
trum (in arbitrary units), (b) momentum-resolved spectral function
(in arbitrary units), (c) momentum-integrated Raman spectrum, and
(d) momentum-integrated spectral function.
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The quasiparticle contribution can be appropriately described,
at low excitation energies and close to the Fermi surface, by a
sharply peaked Lorentzian:

Aqp(k,h̄ν)  Zk

π

�k[
h̄ν − (

ε
qp
k − µ

)]2 + �2
k

. (19)

In this expression, ε
qp
k is the dispersion relation of quasi-

particles, �k is their inverse lifetime, and Zk is the spectral
weight associated with the contribution of quasiparticles to
the total spectrum of single-particle excitations [38]. In a
Fermi liquid, the quasiparticle excitations become long-lived
coherent excitations as the Fermi surface is approached,
corresponding to a sharp peak with width �k ∝ (εqp

k − µ)2 ∼
(k − kF )2.

To illustrate how quasiparticles contribute to the Raman
spectrum, Fig. 20 displays the results of a DMFT calculation
for the half-filled Hubbard model at U/D = 1.5, which
corresponds to a Fermi liquid in the intermediate correlation
regime. The momentum-resolved spectral function [Fig. 20(b)]
clearly displays a quasiparticle peak. This quasiparticle peak
becomes sharp as the Fermi surface is reached (corresponding
here to εkF = 0), while for momenta far from the Fermi
surface only a broader incoherent contribution is seen. The
momentum-resolved Raman spectrum [Fig. 20(a)] shows
the same features below the Fermi level. However, the
dispersion of the quasiparticle peak close to kF and the
incoherent contribution far from the Fermi surface behave
differently than in the spectral function. The momentum-
integrated Raman spectrum [Fig. 20(c)] has a well-marked
peak corresponding to quasiparticle contribution to the density
of states, and a broader hump corresponding to incoherent
excitations. In order to better understand these spectral
features, we note that the contribution of quasiparticles
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FIG. 20. (Color online) Spectra for a Fermi liquid with
moderate correlations (µ/D = 0.75, U/D = 1.5, n = 1): (a)
momentum-resolved Raman spectrum (in arbitrary units),
(b) momentum-resolved spectral function (in arbitrary units),
(c) momentum-integrated Raman spectrum, and (d) momentum-
integrated spectral function.

to the momentum-resolved Raman spectrum reads, using
Eq. (19) in Eq. (13),

R
qp
q=0(k,ω)  CnF

(
ε

qp
k − µ

)Zk

π

× �k[
h̄ω − εo

3 − (
εk − ε

qp
k

)]2 + �2
k

. (20)

From this expression, it is clear that the quasiparticle peak in
the momentum-resolved Raman spectrum disperses according
to (h̄ω − εo

3)qp
k = εk − ε

qp
k ∼ (vF − vqp

F ) · (k − kF ) + · · ·. The
last expression is valid for momenta near the Fermi surface
and involves the difference between the actual Fermi velocity,
vqp

F , in the presence of interactions (related to the effective
mass) and the bare Fermi velocity, vF . Indeed, the peak in
the Raman signal is less dispersive [Fig. 20] than the one in
the spectral function [dispersing as vqp

F · (k − kF )]. In practice,
since the dispersion εk of the outcoupled band is known, it
is possible to extract ε

qp
k directly from the Raman signal by

plotting it as a function of h̄ω − εo
3 − εk (as done in [6] in

the continuum). As the quasiparticle peak becomes very sharp
near the Fermi surface k  kF , those momenta dominate the
momentum integration [at least for lattices with a nonsingular
gv(ε)]. Hence, the momentum-integrated spectrum [Fig. 20(c)]
has a quasiparticle peak located at (h̄ω − εo

3)qp = 〈εkF
〉 − µ 

µU=0 − µ. In the first expression, 〈εkF
〉 corresponds to a

Fermi surface average. The second expression is valid when
the Fermi surface is only mildly deformed by interactions,
so that the Luttinger theorem (conservation of Fermi surface
volume) implies that εkF

= µU=0, where µU=0 is the chemical
potential of the noninteracting system at the same density.
This analysis accounts well for the location of the peak
(at ∼−µ) in the spectrum of Fig. 20(c) (which corresponds
to half filling, so that µU=0 = 0, while µ = U/2 = 0.75D).
The onset of Raman absorption in the momentum-integrated
spectrum at T = 0 corresponds to the restriction due to
the Fermi function h̄ω − εo

3 > εk − µ and, hence, corre-
sponds to a threshold frequency, (h̄ω − εo

3)th = −D − µ,
again well obeyed in Fig. 20(c). We note that this absorption
threshold corresponds to the transfer of states from the
bottom of the band with k = 0 (i.e., occupied states well
below the Fermi surface), as is known from radio-frequency
spectroscopy [4,5].

Having discussed a Fermi liquid in the regime of intermedi-
ate correlations, we turn to the opposite limit of a very strongly
correlated system: a Mott insulator, as realized, for example,
in the Hubbard model at half filling and for large interaction
strength (U/D = 3.5 in Fig. 21). There, quasiparticles are
absent and the high-energy incoherent excitations correspond
to the Hubbard “bands.” The lower (upper) Hubbard band
(LHB, resp. UHB) corresponds to the process of removing
(adding) an atom on a singly occupied site. This corresponds
to two peaks in the spectral function [Figs. 21(b) and 21(d)]
at h̄νLHB

k < 0 and h̄νUHB
k > 0, separated by the Mott gap �g .

Since the excitation energy from the ground state for removing
a particle is µ, the lower Hubbard band h̄νLHB

k is centered
at ∼ −µ. This band disperses over a bandwidth of order D

with a width �LHB
k of order D itself. Hence, the excitation is

“incoherent” in nature (except at momenta near the top of the
band where the width is smaller, of order D2/U ). Similar
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FIG. 21. (Color online) Spectra for a Mott insulator (µ/D =
1.75, U/D = 3.5, n = 1): (a) momentum-resolved Raman spectrum
(in arbitrary units), (b) momentum-resolved spectral function (in
arbitrary units), (c) momentum-integrated Raman spectrum, and
(d) momentum-integrated spectral function.

considerations apply to the upper Hubbard band (centered
at ∼ U − µ). The total (momentum-integrated) weight of the
lower Hubbard band in the spectral function is proportional to
n/2, while that of the upper Hubbard band is proportional to
1 − n/2.

At T = 0, the lower Hubbard band is fully visible in the
Raman spectrum, as seen in Figs. 21(a) and 21(c) (where
−µ = −U/2 = −1.75D). This lower band in the momentum-
resolved Raman spectrum is located at (h̄ω − εo

3)LHB
k = εk −

µ − h̄νLHB
k . Since h̄νLHB

k < 0, the lower Hubbard band is
apparent for all momenta (in contrast to a quasiparticle peak,
which is suppressed as the Fermi surface is crossed). As the
momentum integration is dominated by εk = 0, and h̄νLHB

k
is centered at −µ, the lower Hubbard band results in a
peak in the momentum-integrated spectrum located at (h̄ω −
εo

3)LHB  −µ − (−µ) = 0, which is clear from Fig. 21(c). The
threshold for Raman absorption corresponds to (h̄ω − εo

3)th =
mink[εk − h̄νLHB

k ] − µ. The minimum is usually realized for
εk = −D, so that (h̄ω − εo

3)th = −D − h̄νLHB
top − µ. At half

filling, this reads (h̄ω − εo
3)th = −D + �g/2 − U/2, where

�g is the Mott gap. For temperatures comparable to or higher
than the Mott gap, the upper Hubbard band becomes visible in
Raman spectra at a location (h̄ω − εo

3)UHB  −U . Concretely,
imaging the integrated or full Hubbard bands would be very
useful as it would not only give information on these incoherent
excitations themselves, but also provide a method to extract
the interacting strength U and the gap size �g .

Finally, we display results for a strongly correlated Fermi
liquid with a spectral function that simultaneously displays
a central peak of quasiparticle excitations, as well as lower
and upper Hubbard bands (Fig. 22, corresponding to a rather
large coupling U/D = 3.5 with n = 0.85; i.e., to a strongly
correlated Fermi liquid). The Raman spectra reveal both types
of excitations, which also lead to two distinct features in
the momentum-integrated Raman spectrum [Fig. 22(c)] at
frequencies expected from the analysis above. We note that
these two features generally have very different temperature
dependences. As the temperature is raised, the quasiparticle
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FIG. 22. (Color online) Spectra for a strongly correlated Fermi
liquid (µ/D = 0.75, U/D = 3.5, n ≈ 0.85): (a) momentum-
resolved Raman spectrum (in arbitrary units), (b) momentum-
resolved spectral function (in arbitrary units), (c) momentum-
integrated Raman spectrum, and (d) momentum-integrated spectral
function.

peak is suppressed when temperature exceeds the quasiparticle
coherence temperature, of order ZkF

D. In contrast, the lower
Hubbard band starts losing weight (and the upper Hubbard
band starts appearing) only at a higher temperature scale
comparable to the gap scale.

In summary, Raman spectroscopy is a useful probe to ex-
plore various possible regimes of correlations. Broad Hubbard
bands are seen in the incompressible Mott regime, while
the additional observation of a quasiparticle peak at low
temperature signals the formation of a strongly correlated
Fermi liquid.

V. CONCLUSION

In this work, it was demonstrated that Raman spectroscopy
is a versatile probe that can be used to measure the temperature
of Fermi gases confined to optical lattices and to identify
various signatures of strongly correlated fermionic phases.
The proposed detection scheme, implementable with present
technology, relies on transferring a portion of the atoms stored
in the optical lattice potential to a third hyperfine state. This
Raman rate can in principle be resolved in both frequency
and momentum. We showed that momentum resolution is not
required to accurately measure the temperature of free and
weakly interacting fermionic atoms loaded into an optical
lattice and that the detection can be done either locally
or globally. We also demonstrated that detecting several
features of strongly correlated liquids and Mott insulators
such as quasiparticle peaks and Hubbard bands can be done
using the same scheme without knowledge of the atom
momentum. However, in the future, if momentum resolution is
experimentally achieved in a lattice, the momentum-resolved
Raman rate could provide valuable information on the level of
correlation of fermionic cold-atom systems. Finally, we would
like to point out that Raman spectroscopy can even be used
to cool down fermionic atoms confined to an optical lattice as
explained in [39].
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[24] T.-L. Dao, Ph.D. Thesis, École Polytechnique, 2008, [http://

imprimerie.polytechnique.fr/Theses/Files/DaoTungLam.pdf].
[25] Radio-frequency spectroscopy is also possible for the cases of

vanishing momentum transfer.
[26] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller,

Phys. Rev. Lett. 81, 3108 (1998).
[27] W. Hofstetter, J. I. Cirac, P. Zoller, E. Demler, and M. D. Lukin,

Phys. Rev. Lett. 89, 220407 (2002).
[28] In the case of a single frequency, the linear response is valid for

a more restrictive time interval.
[29] For Vlattice/ER = 7, only a small change of the overall amplitude

is visible.
[30] If this condition is fulfilled for µ0, it is also fulfilled for the

whole integration range.
[31] Y. Shin, C. Schunck, A. Schirotzek, and W. Ketterle, Nature 451,

689 (2008).
[32] α = VT r2

min, where rmin is the radial position at which n = 0.3.
[33] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.

Mod. Phys. 68, 13 (1996).
[34] R. Bulla, T. A. Costi, and T. Pruschke, Rev. Mod. Phys. 80, 395

(2008).
[35] R. W. Helmes, T. A. Costi, and A. Rosch, Phys. Rev. Lett. 100,

056403 (2008).
[36] q = 0 can also be realized using radio-frequency spectroscopy.
[37] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039

(1998).
[38] These quantities are related to the self-energy by the standard

expressions Zk = 1/(1 − ∂/∂(h̄ν)ν=0,k), ε
qp
k = Zk[εk + (k −

kF ) · ∇k], �k = ZkIm[(k,ε
qp
k − µ)].

[39] A. Griessner, A. J. Daley, S. R. Clark, D. Jaksch, and P. Zoller,
Phys. Rev. Lett. 97, 220403 (2006).

063618-12

http://dx.doi.org/10.1103/PhysRevLett.94.080403
http://dx.doi.org/10.1038/nature07244
http://dx.doi.org/10.1126/science.1165449
http://dx.doi.org/10.1126/science.1165449
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1038/nature07172
http://arXiv.org/abs/arXiv:0905.4882
http://dx.doi.org/10.1103/PhysRevLett.103.245301
http://arXiv.org/abs/arXiv:0910.1382
http://arXiv.org/abs/arXiv:0911.4143
http://dx.doi.org/10.1103/PhysRevLett.96.030401
http://dx.doi.org/10.1103/PhysRevA.73.031601
http://dx.doi.org/10.1103/PhysRevA.74.043602
http://dx.doi.org/10.1103/PhysRevA.74.043602
http://dx.doi.org/10.1103/PhysRevLett.101.210403
http://arXiv.org/abs/arXiv:0908.3015
http://dx.doi.org/10.1103/PhysRevLett.103.170404
http://dx.doi.org/10.1103/PhysRevLett.103.170404
http://arXiv.org/abs/arXiv:0704.2623
http://dx.doi.org/10.1103/PhysRevLett.102.155301
http://dx.doi.org/10.1038/nphys1476
http://dx.doi.org/10.1038/nphys1476
http://dx.doi.org/10.1103/PhysRevA.73.033621
http://dx.doi.org/10.1103/PhysRevA.73.033621
http://dx.doi.org/10.1088/1367-2630/8/8/157
http://dx.doi.org/10.1103/PhysRevLett.98.240402
http://dx.doi.org/10.1103/PhysRevA.80.023627
http://dx.doi.org/10.1103/PhysRevA.80.023627
http://imprimerie.polytechnique.fr/Theses/Files/DaoTungLam.pdf
http://imprimerie.polytechnique.fr/Theses/Files/DaoTungLam.pdf
http://dx.doi.org/10.1103/PhysRevLett.81.3108
http://dx.doi.org/10.1103/PhysRevLett.89.220407
http://dx.doi.org/10.1038/nature06473
http://dx.doi.org/10.1038/nature06473
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.80.395
http://dx.doi.org/10.1103/RevModPhys.80.395
http://dx.doi.org/10.1103/PhysRevLett.100.056403
http://dx.doi.org/10.1103/PhysRevLett.100.056403
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1103/PhysRevLett.97.220403

