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The appropriate description of light scattering (transmission/reflection) at a bulky artificial medium, consisting
of a sequence of functional metamaterial and natural material films, represents a major challenge in current
theoretical nano-optics. Because in many relevant cases, in particular, in the optical domain, a metamaterial must
not be described by an effective permittivity and permeability the usual Fresnel formalism cannot be applied. A
reliable alternative consists in using a Bloch mode formalism known, e.g., from the theory of photonic crystals.
It permits to split this complex issue into two more elementary ones, namely the study of light propagation
in an infinitely extended metamaterial and the analysis of light scattering at interfaces between adjacent meta
and natural materials. The first problem is routinely solved by calculating the relevant Bloch modes and their
dispersion relations. The second task is more involved and represents the subject of the present study. It consists
in using the general Bloch mode orthogonality to derive rigorous expressions for the reflection and transmission
coefficients at an interface between two three-dimensional absorptive periodic media for arbitrary incidence.
A considerable simplification can be achieved if only the fundamental Bloch modes of both media govern the
scattering properties at the interface. If this approximation is valid, which depends on the longitudinal metamaterial
period, the periodic metamaterial may be termed homogeneous. Only in this case the disentanglement of the
fundamental modes of both media can be performed and the reflection/transmission coefficients can be expressed
in terms of two impedances, each depending solely on the properties of the fundamental mode of the respective
medium. In order to complement the picture, we apply the present formalism to the quite general problem of
reflection/transmission at a metamaterial film sandwiched between a dissimilar metamaterial. This situation asks
for a devoted treatment where multiple modes have to be taken into account.
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I. INTRODUCTION

The desire for media exhibiting strong dispersion in
permeability and/or permittivity was driven by proposals for
spectacular applications as the perfect lens or the cloaking
device, being only one example from the prosperous field of
transformation optics.1–8 These properties came in sight by
taking advantage of metamaterials (MMs). MMs are mostly
made of periodically arranged subwavelength unit cells termed
meta-atoms. Common sense suggests that effective properties
may be assigned to MMs if light does not resolve the
spatial details of the unit cells but experiences instead an
effective homogenous medium characterized, most generally,
by bianisotropic constitutive relations containing the effective
material parameters: permeability, permittivity, and electro-
magnetic coupling parameter. These material parameters must
be necessarily independent of the shape and the illumination
scheme of a specimen and are solely related to the material
itself.9 However, it has been shown recently10 that in the optical
domain this assignment is not permitted for typical MMs due to
the mesoscopic size of the meta-atoms. Since most interesting
dispersive features of MMs fade away as the size of their unit
cell is reduced beyond a certain limit,10–14 one has to get used
to the fact that operation in the mesoscopic domain is rather
unavoidable. However, in recent publications, the term “homo-
geneity” with regard to metamaterials has been discussed in a
broader context15–17 based on the optical response (scattering
response) of a specific MM. Thus it is not surprising that a

unifying solution for a possible homogenization of all kinds
of MMs, in particular such containing mesoscopic structures,
does not exist. Here, we focus on MMs consisting of a sequence
of functional layers (stack of monolayers with periodically
arranged meta-atoms sandwiched between dielectric spacers)
where the lateral period is only a few times less than the
wavelength. This situation is typical for MMs operated in the
optical domain.

In our further consideration, we will leave aside the trivial
cases of a genuine homogeneous (unstructured crystalline
or amorphous) or an effective homogenous medium (size
of inclusions much less than the wavelength) where ma-
terial parameters can be assigned. We will rather define
homogeneity in a broader context as mentioned above. It
might be best understood in terms of a hierarchical scheme,
where subsequent statements require the previous ones to
be fulfilled. (1) The period of the arrangement of unit cells
(meta-atoms) has to be sufficiently small in order to guarantee
that nonzero diffraction orders of a sample are evanescent. (2)
Light propagation inside the medium as well as the coupling
of light from or to an adjacent medium is governed by the
fundamental Bloch mode (FM) with its respective dispersion
relation. In the following, this case is called the fundamental
mode approximation (FMA).18 (3) In FMA, light propagation
and scattering is then characterized by the longitudinal wave
vector component of this mode, derived from the dispersion
relation and henceforth termed propagation constant and an
impedance, usually called Bloch impedance.19,20 These two
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parameters are sometimes referred to as “wave parameters.” If
these conditions are met, we will term the periodically struc-
tured medium homogeneous. The final stage of an effective
homogeneous medium is approached if the dispersion relation
of the FM coincides with that of a medium obeying definite
constitutive relations. The wave parameters might then be
mapped onto material parameters (permittivity, permeability,
and electromagnetic coupling parameter).

In view of the above classification, there are two key
questions arising, namely, (i) when is the FMA valid and
(ii) which approach can be applied beyond its applicability
likewise serving as a benchmark. The answer to both questions
requires a more fundamental description of light scattering
at MMs. As known from the theory of photonic crystals, a
Bloch modal approach is the natural choice when dealing
with periodic media (see, for example, Ref. 21). However,
there is always a trade off between sufficient predictive power
and simplicity such that light interaction with MMs does not
always require a rigorous solution to Maxwell’s equations.
Just to resolve this issue will be the subject of the present
contribution.

It has been shown that light propagation inside a bulk MM
can be described based on the concept of Bloch modes.22–24 In
principle, it requires to deal with an infinite number of modes,
which are usually calculated by numerical means.25–27 At first
glance, this approach does not simplify the problem but it has
been shown that the least damped Bloch mode—the so-called
fundamental mode—describes light propagation in most bulk
MMs sufficiently well.18 This reduces the propagation issue
to the evolution of a single mode in full analogy to a plane
wave propagating in a genuine homogeneous medium. Most
optical properties of a bulk MM can be fully extracted from the
dispersion relation of that single mode, e.g., beam refraction
or diffraction17,28 or pulse spreading. In this context, it has
been shown that a left-handed behavior is neither a sufficient
nor a necessary condition to achieve negative refraction or
anomalous diffraction.17

Now, shifting the focus from infinite MMs toward finite
thicknesses, the scattering (reflection and transmission) prop-
erties of MMs become important to be considered. Detrimental
for a description of finite structures, e.g., a slab or stratified
MMs, is the potential excitation of a larger number of
Bloch modes at the interfaces. Then, the coupling of light
into the MM is a complicated issue and requires a devoted
rigorous treatment.29 It would be highly desirable to likewise
simplify this treatment and, preferably, to extract the coupling
properties of the MM interface from that Bloch mode that
dominates the light propagation in the bulk. Along these
lines we have recently shown that coupling between two
nanostructured media can be sufficiently well described by
a single mode in both media, as long as their geometrical
differences are small.30

Here, we extend this approach to the general case of
light reflection and transmission at a single, planar interface
between strongly dissimilar MMs under generally oblique
incidence. To put it briefly, we will derive rigorous as well
as approximate (FMA) algebraic expressions for the reflection
and transmission coefficients in terms of the Bloch modes of
both media. Then, by concentrating on the rather special but
highly relevant case of the single interface between vacuum

and an MM, we will evaluate the limits of the FMA. Finally,
we will go beyond this scenario in discussing an example that
requires the most general treatment, i.e., when reflection and
transmission are governed by multiple modes.

Accordingly, the manuscript is structured as follows.
In Sec. II, we will discuss the very general problem of
coupling obliquely incident light from one semiinfinite MM
to another one. Mode coupling at the interface of two
different periodic media, as, e.g., photonic crystals, has been
already considered prior to the present work. In this context,
various approaches have been proposed by the assignment
of impedances or impedance matrices,31–36 but except of our
recent works,24,30 most earlier works dealt with nonabsorbing
and two-dimensional media. In contrast to that, our approach,
which is based on Bloch mode orthogonality, is valid for
three-dimensional structures even in the strongly absorbing
regime. Using these relations, we will end up with closed-
form expressions for the reflection/transmission coefficients
in terms of Bloch modes of both MMs. We will then outline an
approximation that takes into account only a finite number of
modes in each MM, ideally only a single one. This potentially
allows for an appreciable simplification of the model and
thus may be useful in the future design of functional MM
elements. Eventually, the reflection/transmission problem at
an arbitrary stack consisting of meta and natural materials can
serve as an example. It is thus straightforward to implement an
algorithm using 2 × 2 matrices that stays in full analogy to the
well-established simple matrix approach for natural material
stacks.

In Sec. III, we will apply our findings to the scattering
at an interface between a homogeneous dielectric medium
and an MM. Based on this scenario, we will evaluate the
level of homogeneity of a certain bulky MM. In doing so,
we will show that the present approach is very close to the
introduction of an impedance—in several articles designated
as the Bloch impedance—which is defined as the ratio between
tangential electrical and magnetic fields.19,20,35 Most notably
we show here that an MM, which exhibits a minimum
longitudinal period required for homogenization, still supports
the dispersive effects of interest, i.e., a left-handed behavior.

The contribution is signed off with two further sections. In
Sec. IV, we numerically study the scattering at a bulky Swiss
cross MM film sandwiched between a fishnet MM. It turns
out, that the FMA fails in this case. Instead, by taking into
account several (evanescent) Bloch modes, the reflection and
transmission coefficients can be observed to converge against
the rigorous solutions. Finally, we will sum up our findings in
Sec. V and discuss the implications of our contribution.

II. INTERFACE BETWEEN TWO DISSIMILAR
METAMATERIALS: THEORETICAL TREATMENT

A. General description

The general problem of light scattering at the interface
between two periodic media L (left) and R (right) under
oblique incidence is displayed in Fig. 1.

The eigenmodes at either side of the interface are Bloch
modes. In the following derivation, we will assume monochro-
matic fields proportional to exp(−iωt) with a real frequency ω.
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FIG. 1. (Color online) Schematic of an interface between two
periodic media. The Bloch vector components tangential to the
interface that are preserved are (kx,ky)T and (−kx, − ky)T for the
adjoint (†) fields, respectively.

Due to the orientation of the interface as depicted in Fig. 1, we
choose the transverse Bloch vector components k‖ = (kx,ky)T

to be equally real to maintain the fields finite at infinity. Hence
the longitudinal Bloch vector component kn,z = kn,z(kx,ky,ω)
will be complex in general and follows from the dispersion
relation in the respective medium, which has to be solved
numerically.25 The subscript n denotes the discrete mode
index; just emphasizing that there is generally an infinite set of
Bloch modes applying to a particular set of fixed parameters,
say, (kx,ky,ω). Now, by formally introducing Dirac’s notation,
any Bloch mode can be characterized by its eigenvalue kn,z

and by the lattice periodic ket vector

|Bn〉(x,y,z) ≡ (En,x,En,y,Hn,x,Hn,y)T . (1)

Then, the complete spatial evolution of the nth mode is given
by |Bn〉 exp[i(k‖r‖ + kn,zz)].

Now, let us concentrate on the particular scenario shown in
Fig. 1. On either side of the interface (we discuss medium L in
the following) Fig. 1 shows four discrete sets of modes. Two
of them, i.e., |Ln+〉 and |Ln−〉, are solutions to the same set
of parameters, say, (k‖,ω). Furthermore, |Ln+〉 represents the
modes with an energy flow in positive z direction [in absorbing
materials they fulfill �(kn,z) > 0] and |Ln−〉 are those with
an energy flow in negative z direction [�(kn,z) < 0]. On the
other hand, |L†

n+〉 and |L†
n−〉 are the so-called adjoint fields,37

which are solutions for the reversed tangential wave-vector
component, say, (−k‖,ω). In contrast to the previous case,
|L†

n+〉 represents the modes with an energy flow in negative
z direction [�(kn,z) < 0] and |L†

n−〉 are those with an energy
flow in positive z direction [�(kn,z) > 0].

B. Orthogonality relations

In the following, we will briefly specify the orthogonality
relations between the modes as introduced above, where a
detailed derivation is provided in Appendix. Here, we only
give a concise summary for convenience.

According to Ref. 29, one can define a generalized inner
product

〈B†
n|Bm〉 =

∫ ∫
crosssection

(Em × H†
n − E†

n × Hm)ezdxdy (2)

between Bloch modes of opposite transverse Bloch vector
components k‖. The vector ez denotes the Cartesian unit vector
in z direction and the integration is performed over the cross

section of one unit cell. The integrand depends solely on
the tangential electromagnetic field components. As shown
in Appendix, the Lorentz reciprocity theorem38 yields the
following orthogonality relations between the Bloch modes
of medium L, i.e.,

〈L†
m+|Ln+〉 = L+

mδmn, (3)

〈L†
m−|Ln−〉 = −L−

mδmn, (4)

〈L†
m+|Ln−〉 = 0, (5)

〈L†
m−|Ln+〉 = 0, (6)

where δmn denotes the Kronecker symbol, L±
m are normaliza-

tion constants, and the minus sign in Eq. (4) is just chosen for
convenience. Similar results are valid for the modes of medium
R using different normalization constants R±

m in general. It has
to be mentioned that the normalization constants L±

m as well as
R±

m will depend on the z coordinate in general, however, this
property is not relevant in the following discussion since all
considerations are performed with respect to a fixed reference
plane, namely the interface. Anyway, having the orthogonality
relations at hand we can easily solve for the reflection and
transmission coefficients at the interface between media L
and R.

C. Boundary value problem

Without loss of generality we assume from now on that
the incident light is impinging from the left onto the interface
and can be represented by a superposition of modes |Ln+〉.
Consequently, both reflected (|Ln−〉) and transmitted modes
(|Rn+〉) will be excited. According to that, the continuity of
the tangential electromagnetic field components implies that

∑
n

in|Ln+〉 +
∑

n

rn|Ln−〉 =
∑

n

tn|Rn+〉, (7)

with rn and tn being the reflection and transmission coeffi-
cients, respectively, and in describes the modal decomposition
of the particular impinging field. The rigorous solutions for
rn and tn can be derived by projecting Eq. (7) on 〈R†

k−| and

〈L†
k+| and by exploiting the orthogonality relations (3)–(6). In

matrix notation, this reads as

r = −â−1ĉi, (8)

t = d̂−1 f̂i, (9)

where the matrix elements are given by

akn = 〈R†
k−|Ln−〉, (10)

ckn = 〈R†
k−|Ln+〉, (11)

dkn = 〈L†
k+|Rn+〉, (12)

fkn = 〈L†
k+|Ln+〉 = L+

k δkn. (13)

To sum up, knowing the Bloch modes of both media L and
R, one can construct the matrices â, ĉ, d̂, and f̂ according
to Eqs. (10)–(13) and apply them to rigorously solve for the
reflection and transmission coefficients of all Bloch modes
excited at the interface. For the sake of completeness, we
specify that the elements of the coefficient vector i are
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calculated by projecting any incident field distribution, say
|B〉, onto the modes |Ln+〉 which yields in = 〈L†

n+|B〉/L+
n .

D. Fundamental mode approximation

For scenarios where the eigenmodes of both media L and
R are largely matching each other, the matrices â, ĉ, and d̂ are
expected to become sparse. Hence approximate solutions can
be found by contracting the description to small submatrices,
which only take into account the necessary information around
the matrices’ diagonals. This approach resembles that used
for dielectric periodic media as, e.g., photonic crystals.31

In doing so, the size of the submatrices determines the
accuracy of the approximation. However, we will restrict our
following considerations to the important case where only
the fundamental mode |L0+〉 is impinging on the interface,
i.e., i0 = 1,in�1 = 0. Applying the crudest approximation, i.e.,
neglecting all off-diagonal elements of the matrices defined by
Eqs. (10)–(13), we end up with

r0 = −〈R†
0−|L0+〉

〈R†
0−|L0−〉

, (14)

t0 = 〈L†
0+|L0+〉

〈L†
0+|R0+〉

, (15)

for the reflection and transmission coefficients into the fun-
damental modes.39 As part of this assumption, the resulting
reflection and transmission coefficients rn�1 and tn�1 in all
higher modes are zero. Assuming this approximation to be
accurate, we then exactly mimic the situation of coupling light
at the interface between two genuine homogeneous materials,
i.e., coupling is exclusively determined by the fundamental
eigenmodes only. Due to this fact, this approximation is called
the fundamental mode approximation in the following.

III. INTERFACE BETWEEN A HOMOGENEOUS
DIELECTRIC AND A METAMATERIAL:

THE BLOCH IMPEDANCE

A. The bloch impedance.

After considering the general scenario of coupling between
two periodically modulated media, we now proceed with
the fairly special case of coupling between a homogeneous
material and a periodic one. This case is of particular relevance,
since it covers most practical scenarios such as MM slabs. Even
more relevant, this scenario is of utmost importance since the
validity of the FMA constitutes an important prerequisite for
homogenization as it was discussed in Sec. I.

To continue with the specification of the relevant quantities,
the eigenmodes of medium L become just plane waves |Pn〉.
To keep the description as simple as possible, but without loss
of generality, we will restrict ourselves to y-polarized incident
plane waves impinging from air in the x-z plane and having a
transverse wave vector k‖ = (kx,0)T . Thus

|Pn+〉 = |P †
n−〉 = (

0,EP
n ,H P

n ,0
)T

, (16)

|Pn−〉 = |P †
n+〉 = (

0,EP
n , − H P

n ,0
)T

, (17)

with H P
n = EP

n/ZP,n and

ZP,n =
√

μ0/ε0

cos α + λ
�x

n
(18)

being the transversal impedance of plane-wave mode n. �x

denotes the period in x direction and α is the angle of incidence.
Furthermore, assuming that the MM is mirror-symmetric

with respect to both x and y direction and that it is terminated
such that the unit cell is mirror symmetric with respect to
z direction, similar relations41 hold for the eigenmodes of
medium R, i.e.,

|Rn+〉 = |R†
n−〉 = (

EB
n,x,E

B
n,y,H

B
n,x,H

B
n,y

)T
, (19)

|Rn−〉 = |R†
n+〉 = (

EB
n,x,E

B
n,y, − H B

n,x, − H B
n,y

)T
. (20)

Now, we plug Eqs. (16)–(20) with n = 0 into Eq. (14),
which determines r0 in the fundamental mode approximation.
In the following, we will omit the subscript “n = 0” from
all field components, i.e., EP

0 → EP and EB
0,x → EB

x and
ZP,0 → ZP, keeping in mind that we map everything to
the forward propagating fundamental modes of both media
|P0+〉 and |R0+〉, respectively. Now, explicitly evaluating the
numerator of r0 according to Eq. (14) we get without any
further approximation (‖ · · · ‖ = C−1

∫ ∫
dxdy denotes the

cross section average with C being the cross section area):

〈R†
0−|L0+〉 =

∫∫
dxdy

[
EP × HB − EB × HP]

z

=
∫∫

dxdy
[
EB

y H P − EPH B
x

]

= C
(
H P

∥∥EB
y

∥∥ − EP
∥∥H B

x

∥∥)
≡ C

(
Z−1

P − Z−1
B

)
EP

∥∥EB
y

∥∥,

where we have introduced the tangential Bloch impedance of
the MM

ZB =
∥∥EB

y

∥∥∥∥H B
x

∥∥ (21)

as the ratio between the averaged tangential electric and
magnetic field components. Applying the analog procedure
also to the denominator of Eq. (14), we get

〈R†
0−|L0−〉 = −C

(
Z−1

P + Z−1
B

)
EP

∥∥EB
y

∥∥.

A very similar analysis can be also performed for the
transmission coefficient t0, but a detailed derivation will be
omitted here. We find the final expressions for the reflection
and transmission coefficients to be

r0 = ZB − ZP

ZB + ZP
, (22)

t0 = 2ZB

(ZB + ZP)

EP∥∥EB
y

∥∥ . (23)

Most strikingly, Eqs. (22) and (23) are formally identical to
the reflection/transmission coefficients at an interface between
two genuine homogeneous media42 provided that one uses the
Bloch impedance as defined above to characterize the periodic
medium R.

Let us briefly organize our thoughts. It turns out that the
calculation of the FMs transmission and reflection coefficients
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t0 and r0 according to Eqs. (22) and (23) is fully equivalent
to the usage of Eqs. (14) and (15) that is nothing else than
the FMA in the context of a Bloch mode description. It
has to be mentioned that the presented coincidence between
these two descriptions is not self-evident.43 On the one hand, it
is methodologically interesting, as we believe, since it brings
together two different perspectives to look at metamaterials:
a periodic medium perspective (generally dealing with mul-
tiple Bloch modes) and a homogeneous medium perspective
(dealing with effective wave parameters as the propagation
constant and the impedance). On the other hand, and this is
even more important, it may serve as a benchmark to evaluate
the conditions that are prerequisite for homogenization. In
other words, the validity of the FMA in comparison with the
rigorous solution according to Eqs. (8) and (9) can be used
to either justify or reject the assignment of effective wave
parameters and, in particular, an impedance. This problem is
the subject of the following paragraph and it will be dealt with
by means of a specific example.

Finally, a subtle fact has to be discussed. In the current
discussion, we have assumed the referential medium L to be
a homogenous isotropic dielectric. Without having examined
it in more detail, the coincidence between Eqs. (14) and (15)
and Eqs. (22) and (23) (and hence the usage of the Bloch
impedance) is specific to this situation. It will be repealed
as soon as the referential medium becomes another periodic
medium. Nevertheless, Eqs. (14) and (15) [but not Eqs. (22)
and (23)] may be applicable as well, which simply expresses
these equations to be the more general ones detached from the
question of the participating media.

B. Swiss cross metamaterial

In the following, we will substantiate the above findings
along a particular example in analyzing a Swiss cross (SC)
MM44,45 as representative for the important class of stacked
MMs in detail. In particular, we will provide a fundamental
guideline how to meet the FMA (being a prerequisite for
homogenization) while simultaneously maintaining the dis-
persive features of interest. To this end, we will consider the
interface between air and a SC MM in a frequency domain
where the longitudinal wave vector is negative (left-handed
behavior). The structure layout is depicted in Fig. 2. All
geometrical parameters are given in the caption. The functional
element of the SC consists of a nanostructured Au-MgO-Au
stack, which is completely embedded in a host material to
separate the distinct SC unit cells. The structure is periodic
in all spatial dimensions and the period in z direction �z will
be subject to variation. It will be chosen sufficiently large
such that pronounced nearest-neighbor interactions, often at
the origin of fascinating effects,46,47 are suppressed. Variation
of �z only changes the thickness of the host material layer. The
thickness of the Au-MgO-Au stack is fixed. Hence the filling
fraction of the SC element with respect to the z direction can be
controlled. In the following, we assume the SC to be terminated
symmetrically right in the middle of the host material layer.

Before going into the detailed analysis of the coupling
problem, we first examine the dispersion relation of the
fundamental mode of the SC structure. Figures 2(b) and 2(c)
show the real and imaginary part of kz(ω) for propagation
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FIG. 2. (Color online) (a): Schematic of the basic setup. The
incident field is polarized in y direction whereas its wave vector
lies in the x-z plane such that k = (kx,0,kz)T in general. The Swiss
cross structure consists of a MgO layer (n = 1.73, thickness is
54 nm) sandwiched between two layers of gold (thickness is 44 nm,
permittivity according to Ref. 40). The remaining parameters are
W1 = 310 nm, W2 = 90 nm, and the lateral period is 600 × 600 nm2.
The entire nanostructure is embedded in a host material with refractive
index of n = 1.4. The period in z direction will be subject to
variation. (b) and (c) Dispersion relation kz(ω) of the fundamental
Bloch mode with k‖ = (0,0)T propagating in positive z direction.
(d) and (e) Dispersion relation kz(kx) of the fundamental mode for a
fixed frequency of 170 THz. The blue solid and black dotted curves
correspond to a period in z direction of �z = 230 and 600 nm,
respectively.

along z, i.e., k‖ = 0. The period �z will be either 230 (blue
solid lines) or 600 nm (black dotted lines), corresponding to
a high- or low-filling fraction in the following discussion.
Any period in-between could have been equally chosen.
The corresponding dispersion relations continuously settle
in-between the two representatively chosen periods. In both
cases, there is a narrow frequency region (around the resonance
position of 170 THz) where the real part of the propagation
constant kz becomes negative. As expected, the resonance is
less pronounced for �z = 600 nm, but also the attenuation
[∝�(kz)] is decreased. For the sake of completeness, Figs. 2(d)
and 2(e) also provide the angular dispersion for a fixed
frequency of 170 THz. The maximum angle of α = π/2
corresponds to grazing incidence of the illuminating plane
wave and hence this value corresponds to kx = 3.56 μm−1

for the transversal Bloch vector component. Obviously, 
(kz)
remains negative throughout the whole angular range.

Now, we proceed with the coupling problem, where Fig. 3
provides the necessary information. First, we concentrate on
r0 and t0. The blue circles (black squares) show |r0| and
|t0| according to Eqs. (22) and (23) for periods �z equal to
230 nm (600 nm). Moreover, Figs. 3(a), 3(b), 3(e), and 3(f)
also display results of rigorous calculations for r0 and t0.
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FIG. 3. (Color online) Modulus of the reflection (a) and trans-
mission coefficient (b) in the fundamental modes |L0−〉 and |R0+〉
and real (c) and imaginary part (d) of the tangential Bloch impedance
associated with |R0+〉 for normal incidence as a function of frequency.
Modulus of the reflection (e) and transmission coefficient (f) in the
fundamental modes |L0−〉 and real (g) and imaginary part (h) of the
tangential Bloch impedance associated with |R0+〉 at a frequency of
170 THz as a function of the angle of incidence. The results have
been obtained by using the approximate formulas Eqs. (21)–(23).
The longitudinal period of the Swiss cross unit cell amounts to
�z,1 = 230 nm (blue circles) and �z,2 = 600 nm (black squares).
For comparison, the results of rigorous calculations are shown by
blue solid (�z,1) and black dotted lines (�z,2).

For both normal and oblique incidence, the quality of the
approximative solutions is clearly better for �z = 600 nm.

For the sake of completeness, we also provide the nor-
malized tangential Bloch impedances ZB/Z0 (with Z0 =√

μ0/ε0) for all considered scenarios. Here, for compari-
son, the impedance retrieved from reflection data Z/Z0 =
(1 + r0)/(1 − r0) is also shown where the logarithmic scale
improves the visibility. As before, it can be clearly recognized
that a smaller filling fraction (longitudinal period larger than
about 400 nm) leads to a reasonable agreement.

To further verify this statement, we have additionally
calculated r0 and t0 for normal incidence at 170 THz as a
function of the longitudinal period �z. Figures 4(a) and 4(b)
clearly evidence the suggested tendency that the accuracy of
Eqs. (22) and (23) increases the smaller the filling fraction is.

The dependence of the scattering data on the longitudinal
period �z suggests that for small periods, higher order Bloch
modes are excited. For small distances between the interface
and the SC nanostructure, the optical near field becomes
more complicated where also the lateral field distribution
of the fundamental Bloch mode is affected.48 Hence the
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FIG. 4. (Color online) Modulus of the reflection (a) and trans-
mission coefficient (b) in the fundamental modes |L0−〉 and |R0+〉, for
normal incidence at 170 THz as a function of the longitudinal period.
The circles represent the approximate solutions according to Eqs. (14)
and (15) and the solid lines the rigorous results. (c) and (d) kz and (e)
and (f) impedance as functions of the longitudinal period. The solid
lines are the propagation constants and the Bloch impedance of the
fundamental Bloch mode, whereas the circles are the outcome of a
parameter retrieval procedure applied to the single-layer SC structure.

mode mismatch between the exciting plane wave and the
fundamental MM Bloch mode increases so that higher order
modes in both media get noticeably excited. On the contrary,
if the filling fraction is sufficiently small such that the
interface is beyond the near-field range of the subwavelength
nanostructure, the lateral field distribution of the fundamental
Bloch mode converges toward a plane wave. This argument
is verified by looking at the Fourier (plane wave) components
of the fundamental Bloch mode for the two cases of large
(�z = 230 nm) and small (�z = 600 nm) filling fractions,
displayed in Fig. 5. It is evident that a small longitudinal period
(large filling fraction) evokes a quite large mode mismatch.
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FIG. 5. (Color online) Comparison of the tangential field
amplitude distribution of the fundamental Bloch mode of the SC
structure in terms of its Fourier harmonics (denoted by the integer
numbers). Both representations are normalized to the zeroth order
Fourier harmonic. The frequency is set to 170 THz.
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C. Impact on the parameter retrieval procedure

Finally, we compare the Bloch mode approach with the
parameter retrieval procedure.49 This retrieval procedure for a
single layer of the current SC structure inherently leads to an ef-
fective propagation constant kz,retr and an effective impedance
Zretr. Of course, the method itself does not initially require
the FMA to be justified. Consequently, it appears worthwhile
to investigate what the retrieved effective parameters really
are. For that purpose, both retrieved parameters are compared
with the propagation constant kz and the impedance ZB of
the fundamental Bloch mode in Figs. 4(c)–4(f), respectively.
As soon as the coupling into the MM gets dominated by the
fundamental mode of each structure with an increasing period,
�z, kz,retr, and Zretr converge towards the fundamental Bloch
mode data kz and ZB, respectively.

If the FMA is not justified, the retrieved parameters kz,retr

and Zretr can exhibit almost arbitrary values and cannot be
linked to any modal property in general. For lossy systems, it
can be easily shown that both parameters, kz,retr and Zretr,
always converge with an increasing number of unit cells
in propagation direction. The effective propagation constant
kz,retr converges to the propagation constant of the FM.50 The
effective impedance Zretr converges to the impedance of the
half space,24 which cannot be related to a single Bloch mode.
The situation gets more involved for lossless systems. Even if
the propagation is dominated by the FM only, but evanescent
modes still contribute to the coupling, unphysical results are
expected. Consider, for example, a weakly (or non) absorbing
slab of a specific nanostructure where pronounced Fabry-Perot
resonances appear. For sufficiently small meta-atom size,
these Fabry-Perot resonances are solely associated to the FM,
whereas the artificial resonances and antiresonances observed
in the effective (material) parameters51 can be attributed to a
nonvanishing contribution of higher order Bloch modes.

To sum up, provided that the filling fraction is sufficiently
small, i.e., the longitudinal period �z exceeds a value of
about 400 nm in our current configuration, the MM can be
considered entirely homogenous in the sense defined above.
All properties of interest can be fully extracted from a single
Bloch mode. Light evolution in the bulk MM can be derived
from the Bloch mode dispersion relation, and the coupling at
the interface is governed by the electric and magnetic fields of
that mode there. Effective wave properties as retrieved from
an inversion of the reflection and transmission coefficients
entirely agree with the Bloch mode properties. However, the
formalism itself can also be used to describe the coupling
of light between MMs in a regime where the MMs cannot
be considered homogenous. A simplification, however, can
always be introduced by considering only a few Bloch modes
to be involved in the process. This will be demonstrated in the
following section.

IV. METAMATERIAL SLAB SURROUNDED
BY A DISSIMILAR METAMATERIAL:

NUMERICAL EXAMPLE

In Sec. II, the procedure to deal with the most general case of
coupling between two MMs has already been outlined. Thus,
in the current section we want to demonstrate the power and

versatility of this approach along a genuine numerical example.
For that purpose one has to remember that Eqs. (8) and (9)
provide the rigorously calculated reflection and transmission
coefficients in terms of the profiles of all Bloch modes
supported by media L and R. Again concentrating on the
reflection and transmission coefficients into the fundamental
modes, it is expected that these coefficients are well defined
by a finite number of Bloch modes only (see discussion in
Sec. II). The precise number will depend, of course, on the
mode-mismatch between both media. A moderate mismatch
between the modal basis of both media at the interface will
result in a quite small number and vice versa.

In the following, we will probe the performance of the
outlined procedure and, in particular, the applicability of
the fundamental mode approximation (FMA) according to
Eqs. (14) and (15). Instead of reconsidering the single interface
scenario, we have now chosen a SC slab embedded in a bulk
fishnet MM to perform that benchmark test. Treating this issue
is the key step toward the study of an arbitrary stack consisting
of different meta or natural materials. The fishnet structure is
sketched in the inset of Fig. 6 and the geometrical parameters
are given in the figure caption.

The SC structure is identical to that used in the previous
section and the longitudinal period was set to �z = 230 nm,
which is likewise the thickness of the SC slab. Again, the
frequency is chosen to be in the left-handed domain of the SC
MM, which is operated at the resonance frequency of 170 THz.
The fishnet’s design is chosen such that a similar resonance
occurs at the same frequency. Thus we study here the light
interaction between two left-handed media.
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FIG. 6. (Color online) Reflection and transmission at a Swiss
cross MM slab embedded between a fishnet MM. Modulus of R and
T for normal incidence as a function of frequency (a) and (b) and
at a frequency of 170 THz as a function of the transversal Bloch
vector component kx of the incident mode (c) and (d), respectively.
The blue, solid lines are the rigorous results. The symbols represent
approximate solutions taking into account a different number of
modes: circles 1 (1), squares 5 (9), and crosses 15 (21). The
numbers in brackets are those for oblique incidence. The fishnet’s
functional element consists of a Ag-MgO-Ag stack completely
embedded in a host material (n = 1.4). The geometrical parameters
are as follows: the thickness of the thick (thin) wire is 345 nm
(155 nm), the permittivity of Ag is according to Ref. 52, the refractive
index of MgO is 1.73, the thickness of Ag (MgO) layer is 48 nm
(42 nm), the lateral period is 600 × 600 nm2, and the z period
�z = 200 nm.
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Considering the reflection and transmission properties of
the SC slab, we can immediately write the overall reflection
and transmission coefficients as

R = r0 + t0t
′
0r

′
0 exp (2ikz�z)

1 − r ′2
0 exp (2ikz�z)

, T = t0t
′
0 exp (ikz�z)

1 − r ′2
0 exp (2ikz�z)

.

The primed and unprimed lower case reflection and transmis-
sion coefficients are those calculated at the single interface
from the fishnet into the SC MM and vice versa. It has to
be mentioned, that r0, t0 and r ′

0, t ′0 represent the data of the
fundamental modes only, but the number of modes used to
calculate them [according to Eqs. (8)–(13)] will be subject to
variations in the following discussion. On the contrary, the
propagation through the thin SC slab, the height of which
corresponds to a single period, is assumed to be completely
governed by the fundamental mode. The results obtained will
prove that this assumption is well justified. The relevant results
are displayed in Fig. 6, i.e., R and T both for normal incidence
as a function of the frequency [see Figs. 6(a) and 6(b)] and
at a frequency of 170 THz as a function of the transverse
wavevector k‖ = (kx,0)T [see Figs. 6(c) and 6(d)]. Comparing
the FMA (red circles) with the rigorous results (blue solid
lines), where all Bloch modes of both media are taken into
account, it can be recognized that the FMA reproduces the
main features only on qualitative grounds. Quantitatively,
however, the FMA’s predictions may differ by up to 25%
from the rigorous results. Increasing the number of Bloch
modes to built up the matrices defined by Eqs. (10)–(13),
it can be observed in Fig. 6 that the results are converging
across the entire spectral region. For oblique incidence the
symmetry with respect to the x direction is broken resulting
in a larger number of modes in both media participating in the
coupling process. For that reason, an adequate convergence
is only obtained with more modes than in the case of normal
incidence. At first glance, the number of modes to achieve
a satisfying convergence seems to be quite large. However,
by using a plane-wave basis29 rather than the Bloch mode
approach, hundreds of basis states would be required to get
the same accuracy.

It has to be admitted that the accuracy of the solution does
not increase strictly monotonically with the number of Bloch
modes taken into account. This might be attributed to the
particular sorting of the Bloch modes one has chosen, because
there is no a priori information about the importance of a
particular mode with respect to coupling. In our calculations
we have sorted the Bloch modes with respect to the modulus of
the imaginary part of the propagation constants. Nevertheless,
independent of that detail the overall convergence is always
ensured.

V. CONCLUSION

In conclusion, we have provided a self-consistent and
comprehensive description to analyze the reflection and
transmission of light at an interface between two absorbing
media composed of periodically arranged unit cells in terms
of their Bloch eigenmodes. The formalism itself is rather
general, but it unfolds most notably its strength when applied
to MMs that may be homogenized. To this end, a homogeneous
MM, as we wish to understand it here, is characterized by the

property that light propagation therein and light coupling to
an adjacent material is governed by the dispersion relation and
the field profile of a single Bloch mode. If both conditions
hold, all effective wave parameters as, e.g., the longitudinal
wave vector and the impedance, can be entirely related to this
Bloch mode, which is in analogy to an homogeneous optical,
e.g., an anisotropic material.

It was shown that if the MM cannot be considered
homogeneous multiple Bloch modes are involved in the
coupling process. Then, the impedances as retrieved either
from the reflection coefficient of a single interface or from the
spatial field average of the fundamental Bloch mode do not
coincide. A successful homogenization basically requires that
the profile of the Bloch mode at the interface, and only there,
has to resemble a plane wave. For deviating field distributions,
higher order Bloch modes (and similarly higher order plane
waves) are required to satisfy the boundary conditions at the
interface.

This entails that the fundamental Bloch mode does not
need to resemble a plane wave everywhere. If this would be
the case, the interesting dispersive effects that make MMs so
appealing could not have been witnessed. In contrast, the MM
we have analyzed still possesses the dispersive effects it has
been intentionally designed for, e.g., lefthandness, negative
refraction, and anomalous diffraction, since close to the actual
metallic nanostructure the field strongly deviates from a plane
wave. Hence this concept can be applied to all stacked MMs
with fixed lateral periods where the longitudinal period of
the meta-atom arrangement can be made sufficiently large. Of
course, this entails a trade-off between strong dispersive effects
and homogenization and hence it requires a careful design in
which both aspects need to be balanced. It is evident that the
present formalism is not restricted to a single MM film but can
be likewise applied to a sequence of different meta and natural
material films.
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APPENDIX: BLOCH MODE ORTHOGONALITY

In the following, we derive the orthogonality relations of
Bloch modes of a periodic but absorbing medium. Therefore
we start with Maxwell’s equations in a medium without
sources. Using a Cartesian coordinate system (x,y,z), they
read as

∇ × E(r,ω) = iωμ̂(r,ω)H(r,ω), (A1)

∇ × H(r,ω) = −iωε̂(r,ω)E(r,ω). (A2)
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Both the permeability and permittivity tensors μ̂(r) and ε̂(r)
are spatially periodic. Now, following the derivation of Ref. 29,
one can show that the relation

∫∫
∂V

(E2 × H1 − E1 × H2) · dS

= i(ω1 − ω2)
∫∫

V

∫ (
ET

1 ε̂E2 − HT
1 μ̂H2

)
dV (A3)

is fulfilled for E1 and H1 (E2 and H2), representing the

electric and magnetic field vectors of any monochromatic
field distribution that is solution to Eqs. (A1) and (A2) at
frequency ω1 (ω2). The only assumption one has to make for
the derivation of Eq. (A3) is that the underlying materials are
reciprocal, i.e., ε̂ = ε̂T and μ̂ = μ̂T .

In what follows, Eq. (A3) is applied to the eigenmodes—
the Bloch modes—of the respective medium. Using Dirac’s
notation, already introduced in the main body of the text [see
Eq. (1)], any Bloch mode, say |B(ω,k‖)〉, will depend on the
chosen frequency ω and the chosen transversal (in x and y

direction) Bloch vector component k‖ in a parametric manner.
Similarly, the longitudinal component of the Bloch vector
kn,z is also assumed to be a continuous function of (ω,k‖).
It’s nothing else than the dispersion relation of the periodic
medium. Moreover, (ω,k‖) are real quantities whereas kn,z is
complex in general.

Now, we are looking for the modes associated with a
specific set of parameters (ω,k‖). There is a countable (mode
index n) but infinite number of solutions. Moreover, one
has to distinguish between forward |Bn+〉 and backward
|Bn−〉 propagating modes with respect to z direction with
associated Bloch vectors according to kn+ = (k‖,kn+,z) and
kn− = (k‖,kn−,z), respectively. Having this set of modes at
hand, we now assume to have a second set of solutions
related to the parameters (ω, − k‖). We will call them the
adjoint modes. Of course, these solutions can be similarly
divided into forward |B†

n−〉 and backward |B†
n+〉 propagating

modes having Bloch vectors k†
n− = (−k‖, − kn−,z) and k†

n+ =
(−k‖, − kn+,z), respectively. The latter property, i.e.,

k†
n± = −kn±, (A4)

is a direct consequence of Bloch mode reciprocity29 and it will
be essential in the following.

Now, to proceed with the derivation of the orthogonality
relations, we introduce the fields of an arbitrary Bloch mode
|Bn〉 and another adjoint mode |B†

m〉 into Eq. (A3). The
integration is carried out over one unit cell in x and y

direction and the frequencies are specified as ω1 = ω2 = ω.
In z direction, the integration volume is limited by the planes
z and z + z0, with z0 being any real and positive quantity. Due
to the fact that the chosen modes have an opposite transversal
Bloch vector component, the integration kernel of Eq. (A3) will
be strictly periodic with respect to the transversal directions.
Consequently, the surface integral collapses and there are only
two integrals left between the planes z and z + z0. Using
Dirac’s notation to represent the bilinear form∫∫

z=z′
(En × H†

m − E†
m × Hn)zdxdy ≡ 〈B†

m|Bn〉z′ , (A5)

Eq. (A3) transforms into

exp [i(kn,z + k†m,z)z0]〈B†
m|Bn〉z+z0 − 〈B†

m|Bn〉z = 0. (A6)

Thus it is immediately clear that the product
exp [i(kn,z + k

†
m,z)z]〈B†

m|Bn〉z does not depend on z explicitly.
Furthermore, evaluating Eq. (A6) for z0 = �z and exploiting
the quasiperiodicity of the Bloch modes along the z direction,
it follows that

〈B†
m|Bn〉z{1 − exp [i(kn,z + k†m,z)�z]} = 0. (A7)

Hence if kn,z = −k
†
m,z, the bilinear form 〈B†

m|Bn〉z has to
vanish. Only if kn,z = −k

†
m,z it may be nonzero. Making use

of Eq. (A4), we can immediately identify the corresponding
scenarios and derive the orthogonality relations between the
usual and the adjoint modes to be

〈B†
m+|Bn+〉z = f (z)δmn, (A8)

〈B†
m−|Bn−〉z = −f (z)δmn, (A9)

〈B†
m+|Bn−〉z = 0, (A10)

〈B†
m−|Bn+〉z = 0. (A11)

Here, δmn denotes the Kronecker symbol being uniquely zero
except for n = m. The introduced normalization function f (z)
emphasizes the z dependency of the bilinear form according
to Eq. (A5). It has to be mentioned that this drawback can be
easily lifted just by including the respective Bloch exponentials
exp (ikn,zz) and exp (ik†m,zz) into the definition of Eq. (A5).
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