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Abstract: We report on a simple method allowing one to decompose
the duration of arbitrary ultrashort light pulses, potentially distorted by
space-time coupling, into four elementary durations. Such a decomposition
shows that, in linear optics, a spatio-temporal pulse can be stretched with
respect to its Fourier limit by only three independent phenomena: nonlinear
frequency dependence of the spectral phase over the whole spatial extent
of the pulse, spectral amplitude inhomogeneities in space, and spectral
phase inhomogeneities in space. We illustrate such a decomposition
using numerical simulations of complex spatio-temporal femtosecond and
attosecond pulses. Finally we show that the contribution of two of these
three effects to the pulse duration is measurable without any spectral phase
characterization.

© 2011 Optical Society of America

OCIS codes: (320.5520) Pulse compression; (320.5550) Pulses; (320.7100) Ultrafast measure-
ments.
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5. K. Osvay, A. P. Kovács, Z. Heiner, G. Kurdi, J. Klebniczki, and M. Csatari, “Angular dispersion and temporal
change of femtosecond pulses from misaligned pulse compressors,” IEEE J. Quantum Electron. 10, 213-220
(2004).

6. X. Gu, S. Akturk, and R. Trebino, “Spatial chirp in ultrafast optics,” Opt. Commun. 242, 599–604 (2004).
7. Z. Bor, “Distortion of femtosecond laser pulses in lenses,” Opt. Lett. 14, 119–121 (1989).
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1. Introduction

The generation, manipulation and characterization of ultrashort light pulses have become an
area of considerable interest in the past few decades. Such pulses allow probing ultrafast phe-
nomena such as chemical reactions [1] using femtosecond pulses, or the electronic motion in
molecules [2] thanks to the decrease of the pulse duration down to the attosecond time scale.
One major assumption in ultrafast optics is that time and space are uncoupled variables, which
means that an ultrashort pulse can be described as the product of a time dependent pulse shape
with a space dependent beam profile [3]. It considerably simplifies the way to describe a pulse
since the pulse shape is supposed to be same in every point in space.

However, since the beginning of ultrafast science, it has been shown that this assumption
is often invalid. For example, misaligned prisms or gratings compressors, or aberrated optical
systems can spatio-temporally distort a pulse [4–10], which causes a coupling between time
and space variables. Moreover, as shorter and shorter pulses become accessible to experiment,
this coupling has become more and more difficult to avoid. For example, it has been shown
that attosecond extreme ultraviolet (XUV) pulses are very sensitive to optical aberrations of
typical focusing mirrors [11]. So there is an increasing need for theoretical tools to describe the
coupling phenomenon.

Especially, associating a duration to a pulse is not straightforward anymore. Indeed, since
coupling makes the pulse change in space, its duration has to be locally defined [12, 13]. Nev-
ertheless, it remains important to be able to summarize the full spatio-temporal pulse into a
single duration. To do so, it has been proposed to consider the duration of the spatially inte-
grated pulse, namely the global pulse duration [9,10,12,13]. Some theoretical models studying
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the global duration already exist [12–14] for both gaussian temporal and spatial profiles and for
first order coupling.

In this article, we propose a more general analysis of the global duration of arbitrary pulses.
More precisely, we report on a way to decompose the root mean square (RMS) global pulse du-
ration of a spatio-temporal pulse into four basic durations based on the behavior of the complex
spectrum versus frequency and space. Each of these durations has a simple physical explana-
tion. Firstly, we describe the principle of the duration decomposition. As an illustration, we
single out each of them in a simple situation that may arise in the femtosecond regime, and we
proceed with a example in the attosecond regime. Finally, we show that the contributions of
three of the four elementary durations to the global pulse duration are measurable without any
spectral phase characterization.

2. Theoretical Study

A linearly polarized light pulse propagating in vacuum can be considered as a scalar electric
field E solution of the propagation equation, that is Eq. (1), where z stands for the position along
the pulse propagation axis, x and y are the transverse coordinates and t is the time variable:

�2E (x,y,z, t)− 1
c2

∂ 2E (x,y,z, t)
∂ t2 = 0 (1)

If considering the problem at a given position z0, one typically assumes that the spatio-
temporal electric field (resp. the spatio-spectral electric field) can be written [3] as a product
of a space-dependent function g(x,y) with a time-dependent function f (t) (resp. a frequency-
dependent function ˜f (ω), where ˜f stands for the Fourier Transform of f ), see Eq. (2):

E (x,y,z0, t) = g(x,y) · f (t) (2)

Defining a duration for such a pulse is straightforward since it suffices to estimate the charac-
teristic width of the intensity function | f |2. One possible way to get such a width is to calculate
the RMS duration Δt defined by Eq. (3):

Δt2 =
〈

t2〉−〈t〉2 (3)

where 〈〉 stands for the usual mean operator weighted by | f |2, so that 〈t〉 is equal to
∫ +∞
−∞ | f (t)|2 tdt/

∫ +∞
−∞ | f (t)|2 dt.

When developing Eq. (3), we get Eq. (4) which is well-established [3]:

Δt2 = Δt2
FT +ΔGD2 (4)

In this equation, GD is the Group Delay and is equal to dϕ/dω , with ϕ the spectral phase of
the pulse. According to Eq. (4), the duration Δt depends on two parameters:

(i) ΔtFT is the Fourier Transform limited duration. It corresponds to the duration of a pulse,
the GD of which is constant with respect to frequency. It is the shortest RMS duration
attainable with a given spectrum.

(ii) ΔGD is the RMS spectral variation of the GD. It quantifies the temporal synchronization
of the spectral components.

To summarize, any spectral variations of the GD will stretch an ultrashort pulse, according to
Eq. (4).

However, these results are based on the major assumption that the pulse is not distorted
by any space-time coupling, see Eq. (2), which is a strong restriction. In order to establish a
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more general formula for the duration of an arbitrary spatio-temporal pulse, we first have to
find a way to convert a space-time signal into a temporal one, whose duration will be easier to
estimate. As proposed in [9, 10], the simplest way to do so is to spatially integrate the pulse.
The resulting temporal signal, hereafter referred to as the Global Pulse IG (t), would be the
signal detected by an imaginary photodiode with a suitable temporal resolution but no spatial
resolution. Moreover, the detection plane of such a sensor would be orthogonal to the pulse
propagation axis, see Eq. (5):

IG (t) =
∫∫ +∞

−∞
|E (x,y, t)|2 dxdy (5)

By analogy, one can define global quantities in the spectral domain, such as the Global Spec-
trum as the spatially integrated spectrum SG (ω), and the Global Group Delay as the spatially
averaged group delay GDG (ω), see Eqs. (6) and (7):

SG (ω) =
∫∫ +∞

−∞

∣

∣

∣

˜E (x,y,ω)
∣

∣

∣

2
dxdy (6)

GDG (ω) = 〈GD〉(x,y) =
∫∫ +∞

−∞

∣

∣

∣

˜E (x,y,ω)
∣

∣

∣

2
GDdxdy/

∫∫ +∞

−∞

∣

∣

∣

˜E (x,y,ω)
∣

∣

∣

2
dxdy (7)

where 〈〉(x,y) is the mean weighted by the spatial intensity. Hereafter, it will be convenient to
also use the spectral weighted mean 〈〉(ω). Moreover, the combination of the spatial mean with
the spectral mean will be summarized into the operator 〈〉(x,y,ω).

Applying Eq. (3) to the temporal signal IG (t), we get the global pulse duration ΔtG, as
named in [12, 13], that is the RMS duration of the spatially integrated pulse. This duration can
be written the following way:

Δt2
G = Δt2

FTG
+ΔGD2

G + τ2
AC + τ2

PC (8)

The complete demonstration of such a decomposition is given in Appendix A. According to
Eq. (8), the duration ΔtG involves four parts:

(i) ΔtFTG is the Global Fourier Transform limited duration. It is the shortest RMS global
duration attainable with the involved spectral components. It corresponds to the duration
of a temporal pulse IFTG (t), the spectrum of which is the global spectrum SG (ω), and the
spectral phase of which is zero. This fundamental limit is reached if there is no spectro-
spatial coupling and the spectral phase is linear, see Fig. 1(a).

(ii) ΔGDG is the Dispersion of the Global Group Delay. It represents the global synchro-
nization of the spectral components for a spatio-temporal pulse, as shown on Fig. 1(b).
This term stands for phenomena such as temporal chirp or higher order dispersion. When
there is no space-time coupling, the GD does not depend on (x,y) anymore, so ΔGDG

reduces to ΔGD, which was previously defined in Eq. (4).

(iii) τAC represents the temporal stretch due to a coupling of the spatio-spectral amplitude.
Hereafter, such a coupling will be referred to as an Amplitude Coupling and τAC as the
Amplitude Coupling Duration, see Fig. 1(c). This duration is zero if every spectral com-
ponent is equally distributed spatially, that is if the local Fourier-Transform limited du-
ration ΔtFT (x,y) is equal to ΔtFTG in every point in space, see Eq. (9). τAC includes the
influences of phenomena such as spatial chirp.

τAC =
〈

Δt2
FT (x,y)−Δt2

FTG

〉1/2

(x,y)
(9)
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Fig. 1. Description of the decomposition of the global duration of an arbitrary pulse into
four elementary durations. The scales are in arbitrary units. For each case, the instantaneous
frequency of the spatio-temporal pulse (central part) and its corresponding global pulse (on
top) are depicted, along with the local spectrum (gray shaded lines) and group delay (black
dashed line) for three positions (on the right part). (a) The shortest pulse duration attainable
ΔtFTG is reached when every spectral component is synchronized both in space and time
and is equally spread in space. The global pulse will be stretched by (b) any temporal
desynchronization of the spectral components, due to a temporal chirp, for example, (c)
any inhomogeneity in their spatial spread, induced by phenomena such as spatial chirp, or
(d) any spatial desynchronization of these spectral components, caused by spatially varying
time delay, for example.
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(iv) τPC stands for the Phase Coupling Duration, that is the temporal stretch induced by a
coupling on the spatio-spectral phase. It quantifies the spatial synchronization of every
spectral component, see Eq. (10) and Fig. 1(d). This has an influence when there is a
spatio-spectral coupling in the phase, i.e. when the phase cannot be written as a sum of a
frequency-dependent function with a space-dependent function. It summarizes the effects
of phenomena such as spatially varying time delay.

τPC =
〈

[GD(x,y,ω)−GDG (ω)]2
〉1/2

(x,y,ω)
(10)

Equation (4) highlighted that a pulse without space-time coupling can be described as a
Fourier-transform limited pulse stretched by any non linear variations of its spectral phase.
Equation (8) extends this analysis to spatio-temporal pulses. It shows that any space-time cou-
pling can be seen as a deviation of local properties from global properties (see Eqs. (9), and
(10)), and that any coupling stretches a pulse. Moreover, Eq. (8) is a general formula which is
accurate for arbitrarily complex spatio-temporal pulses.

3. Examples of Decomposition of the Duration

3.1. Basic Examples

In order to see the influence of these four parameters on distorted pulses, we now consider sev-
eral examples of duration decomposition. We numerically simulate a simple pulse with a zero
spectral phase and no space-time coupling, namely a 800nm gaussian pulse with a 10 f s RMS
duration. The pulse spatial profile is Gaussian and its RMS width Δx is equal to 1 μm. Then we
add various distortions on the pulse, and numerically calculate the duration decomposition in
each case. To simplify the understanding of the described pulses, we here consider only (x, t)
dependent pulses, so the previous equations remain valuable if removing the y coordinate.

First, let us consider a pulse that is distorted by a time delay which linearly varies in space
with a slope γ equal to 20 f s/μm. We obtain the pulse reported on Fig. 2(a), the pulse front
of which is tilted. The numerically obtained duration decomposition highlights that the pulse
stretch is due to phase coupling. Indeed, there is no amplitude coupling since the spectrum
remains the same in every point in space. This distortion only affects the group delay, the latter
being given by Eq. (11):

GD(x) = γ · (x− x0) (11)

In this equation, x0 is the central radial position of the pulse, which is equal to 0 μm. Since
the group delay does not depend on ω , all the spectral components remains synchronized at a
given point in space, so that GDG is zero. On the other hand, a spatially varying GD indicates a
phase coupling. Indeed, using Eq. (10) gives immediately Eq. (12):

τPC = |γ | ·Δx (12)

Given that Δx is equal to 1 μm, Eq. (12) predicts a pulse stretch equal to 20 f s, as shown on
Fig. 2(a).

Now, consider the situation where the pulse is distorted by both spatial and temporal
chirps. The spatial chirp is characterized by a spatial shift ζ of the spectral components of
−0.118 μm/nm, and the Group Delay Dispersion (GDD) inducing the temporal chirp is equal
to 400 f s2/rad. It is well established that adding temporal and spatial chirp creates pulse front
tilt [15], which is visible on Fig. 2(b). According to our duration decomposition, it appears that
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Fig. 2. Three examples of the duration decomposition of spatio-temporal pulses. The spatio-
temporal pulses and the global pulses (red shaded curves) are reported on the upper panels.
The associated duration decompositions are reported on the lower panels. (a) Pulse front
tilt caused by a time delay linearly varying in space. (b) Pulse front tilt caused by both
spatial and temporal chirps. (c) Pulse distorted by a space dependent Group Delay Disper-
sion (negative for negative positions, and positive for positive ones). The Global Fourier
Transform limit IFTG (t) of the three distorted pulses is reported in a) (blue shaded curve).

the global pulse is equally stretched by ΔGDG and amplitude coupling. Indeed, the GDD mod-
ifies the spectral phase while leaving the spectrum unchanged, as shown by Eq. (13), so it can
only modify ΔGDG or τPC:

GD(ω) = GDD · (ω −ω0) (13)

where ω0 equals 800nm and represents the central angular frequency of the spectrum. Since
the group delay is constant in space, GD(x,y,ω) equals GDG (ω) in every point, so that τPC is
zero whereas ΔGDG is given by Eq. (14):

ΔGDG = |GDD| ·Δω (14)

This expression stands for the usual stretch term of an uncoupled pulse distorted by a constant
GDD [3]. As for spatial chirp, it spatially spreads the spectral components, so that the spectrum
becomes narrower than SG (ω) at a given point in space, as depicted on Fig. 1(c). Consequently,
τAC cannot be null insofar as the local Fourier Transform limited duration ΔtFT (x) becomes
greater than ΔtFTG . Indeed, it was shown [6] that adding a linear spatial chirp to a pulse, the
beam and pulse profile of which are Gaussian, makes the local width of the spectrum Δω ′ (x)
decrease, see Eq. (15):
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Δω ′ =
(

1
Δω2 +

ζ 2

Δx2

)−1/2

(15)

where Δω is the spectrum width without spatial chirp. Moreover, it is well-known that the
quantity ΔtFT ·Δω ′ is equal to 1/2 for gaussian pulses. This allows to deduce ΔtFTG and the
local Fourier Transform limited duration ΔtFT (x), see Eqs. (16) and (17):

Δt2
FTG

=
1

4Δω2 (16)

Δt2
FT =

〈

Δt2
FT

〉

(x) =
1

4Δω ′2 =
1

4Δω2 +
ζ 2

4Δx2 (17)

Thus, using the definition of the amplitude coupling duration, we obtain τAC:

τAC =
|ζ |
2Δx

(18)

According to Eq. (14) and (18), both ΔGDG and τAC have to be equal to 20 f s. Finally, by
comparing Figs. 2(a) and 2(b), it appears that pulse front tilt, or more generally distortion of the
shape of the pulse front, can be obtained either by adjusting the phase coupling, or by choosing
a combination of amplitude coupling with a nonzero global group delay.

As a third example, let us consider a radially varying GDD characterized by a parameter ξ ,
which equals 500 f s2/rad/μm. To be more specific, the pulse depicted on Fig. 2(c) is distorted
by a positive (resp. negative) GDD for positive (resp. negative) positions and zero on the propa-
gation axis. The resulting global pulse is clearly stretched by these distortions. But according to
the duration decomposition, the global pulse is not chirped since ΔGDG remains null. Indeed,
since the GDD is alternatively negative and positive in different points in space, GDG (ω) is
zero. In other words, the spectral components remain temporally synchronized on average. Fi-
nally, the real source of pulse stretching is phase coupling, insofar as the GD depends on space.
More precisely, the group delay is given by Eq. (19), and the corresponding phase coupling
duration by Eq. (20):

GD(x,ω) = ξ · (ω −ω0) · (x− x0) (19)

τPC = |ξ | ·Δx ·Δω (20)

The latter gives a value of τPC equal to 25 f s, as shown on Fig. 2(c).

3.2. Complex Example

To go one step further with this analysis of the duration decomposition, we now consider more
complex spatio-temporal pulses. Optical aberrations are known to be a typical source of spatio-
temporal distortions of ultrashort pulses [7–9]. In particular, it has been shown that attosecond
XUV pulses are very sensitive to aberrations induced by most focusing mirrors [11]. Moreover,
such pulses are chirped due to the generation process [16]. The latter phenomenon, called the
atto-chirp, is unavoidable. So the attosecond pulses can be stretched in a highly complex way
due to a combination of atto-chirp and optical aberrations. Now we will investigate the influence
of these various phenomena by decomposing the global duration of such distorted attosecond
pulses.

To do so, we simulate an attosecond pulse reflected off a grazing incidence ellipsoidal mirror,
and we compare the aberration-free case with a configuration that is aberrated due to misalign-
ment. The focal length of the mirror is equal to 750mm and its optimal grazing angle is equal
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Fig. 3. Simulation of the full spatio-temporal electric field distribution of an attosecond
pulse distorted by optical aberrations. (a) The attosecond pulse is focused by a grazing
incidence ellipsoidal mirror, the optimal grazing angle of which is equal to 11.5◦. The
mirror is set with a grazing angle of 11.4◦ to see the impact of astigmatism on the pulse. (b)
The spatio-temporal intensity distribution of the pulse at the paraxial focus is represented.
The projections on the (x, t) and (y, t) sides of the box stand for two slices of the 3D pulse
located on the dashed lines. The projection on the (x,y) side represents the temporally
integrated pulse, that is the image that should be obtained if using a CCD sensor. The pulses
IG (t) (red shaded curve) and IFTG (t) (blue shaded curves) associated to the spatio-temporal
pulse are represented above the box. (c) (resp. (d)) The instantaneous frequency of the (x, t)
(resp. (y, t)) projection is plotted. Astigmatism is responsible for the inverted curvatures
of the pulse front on the two projections, whereas the atto-chirp makes the instantaneous
frequency vary linearly throughout the pulse envelope.

to 11.5◦, leading to sagittal and tangential radii of curvature equal to 1500mm and 299mm,
respectively. To add some aberrations to the pulse, the mirror is set in the focus-focus configu-
ration, but with a grazing angle reduced to 11.4◦, see Fig. 3(a).

The attosecond pulse generated at the source is chosen not to be distorted by space-time
coupling. Its XUV spectrum has a gaussian envelope, centered at 75eV with a full width at
half maximum (FWHM) of 30eV . The intrinsic GDD has a typical value of 6000as2/rad [16],
and the divergence of the beam is between 1 and 2mrad over the whole spectrum. Since we
simulate a grazing incidence mirror, we can consider that its reflectivity is constant and its
spectral phase is linear over the whole spectrum, which is the case for gold or platinum made
mirrors. The theoretical model for the simulations is described in [11]. As shown in Fig. 3(b),
the full (x,y, t) pulse is simulated. This becomes necessary to completely see the influence of
aberrations that clearly depend both on x and y. To be more specific, Fig. 3(b) reports on the
evolution in space and time of the intensity of the attosecond pulse at the paraxial focus of the
ellipsoidal mirror. The obtained spatio-temporal pulse is clearly distorted by astigmatism [17],
leading to a stretch of the global pulse. In addition to astigmatism, the atto-chirp increases the
pulse duration too. As shown on Figs. 3(c) and 3(d), this causes the instantaneous frequency to
vary throughout the envelope of the pulse.

To separate the influences of the atto-chirp and of the aberrations, we study the evolution of
the pulse and of its duration decomposition during the transition from an aberration free case,
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Fig. 4. Evolution of the duration decomposition of a refocused attosecond pulse with re-
spect to the strength of astigmatism, that is with respect to the deviation from the optimal
grazing angle of 11.5◦ to 11.4◦. (a) Simulation of the spatio-temporal pulses (lower part)
and their global pulses (upper part) with respect to the grazing angle. (b) Evolution of the
global duration of the pulse (black diamonds) and its decomposition into the four parame-
ters: ΔtFTG (blue circles), ΔGDG (yellow squares), τAC (orange up triangles), τPC (red down
triangles), and their corresponding fits (dashed lines).

i. e. where the only possible stretch phenomenon is the atto-chirp, to the previous aberrated
case. We first consider that the mirror is set at its optimal grazing angle of 11.50◦, leading to a
diffraction limited pulse, see Fig. 4(a). At this angle, the duration of the obtained global pulse
is equal to 118as (278as FWHM). The decomposition shows that ΔtFTG is equal to 26as, see
Fig. 4(c). This duration is also the Fourier Transform limited pulse duration given by Eq. (16)
using the initial gaussian spectrum. Indeed the global spectrum does not change after the reflec-
tion off the mirror since its reflectivity was supposed to be constant over the whole spectrum.
Moreover, the spectral phase of the grazing incidence mirror was assumed to be linear due to
the total reflection phenomenon. So the obtained ΔGDG of 115as also corresponds to the tem-
poral stretch of a pulse, the spectrum and GDD of which are the initial gaussian spectrum and
the initial GDD, as confirmed by Eq. (14). Finally it appears that the two coupling durations
are zero, which is consistent since a diffraction limited pulse at its focus is not distorted by any
space-time coupling.

We now consider the evolution of the decomposition while changing the grazing angle from
11.5◦ down to 11.4◦, i. e. while adding astigmatism to the attosecond pulse. ΔtFTG remains
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constant since geometric aberrations do not change the involved spectral components, that is
SG (ω). As for ΔGDG, it appears that the global group delay GDG (ω) does not vary either, since
the atto-chirp remains constant whatever the strength of aberrations. Moreover, the amplitude
coupling duration remains null whereas τPC increases linearly with respect to the grazing angle.
Indeed, as it was in the case of Fig. 3(c) and 3(d), the pulse is composed of the same spectral
components in every point in space, so the spectrum does not vary in space. But the major
consequence of astigmatism is to curve the pulse front by applying a time delay depending on
space to the diffraction limited pulse. This phenomenon was already described on Fig. 1(d) and
Fig. 2(a), and is known to be pure phase coupling. So the stronger the astigmatism, the greater
the phase coupling duration. Moreover, it appears that a 0.1◦ misalignment of the mirror is
sufficient to almost double the global pulse duration, which confirms the high sensitivity of
attosecond pulses to optical aberrations.

These numerical simulations confirm that the duration decomposition is suitable to describe
various, realistic and potentially highly complex spatio-temporal pulses.

4. Experimental Considerations and Discussion

For now, the duration decomposition has only been used to theoretically describe spatio-
temporal pulses. But it could be interesting to know how to measure these durations experi-
mentally. Of course, if we use techniques able to characterize the full spatio-temporal electric
field of a pulse [18–21], the four durations can be easily extracted. But some other methods,
which are easier to implement, may in fact give access to other measures of duration. Moreover,
since the elementary durations correspond to four independent phenomena, these techniques are
not necessarily the same for all the durations:

i) ΔtFTG is given by the spatially integrated spectrum SG (ω). So a typical spectrometer
without spatial resolution is sufficient to get IFTG (t) and its duration.

ii) τAC can be obtained by measuring the spatially resolved spectrum with an imaging spec-
trometer [6].

iii) ΔGDG can be determined applying interferometric spectral phase characterization tech-
niques such as Spectral Phase Interferometry for Direct Electric-field Reconstruction
(SPIDER). Indeed, when using such techniques, the retrieved group delay is usually
known up to a constant [22, 23] which can depend on position in presence of phase
coupling. Consequently, performing independent measurements in different points of
the pulse does not allow to reconstruct the full spatio-temporal pulse. Nevertheless, it
does not prevent from determining ΔGDG, since this space dependent constant GD does
not play any role in the global group delay. More precisely, the experimental group de-
lay GDxp can be considered as a centered group delay GD(x0,y0,ω)−〈GD〉(ω) (x0,y0)

where the absolute GD at the point (x0,y0) has been lost. According to Eq. (21), ΔGDG

depends only on GDxp. So knowing the latter is sufficient to determine ΔGDG. Never-
theless, it should be noted that the mean of the GD has to be weighted by the spatially-
resolved spectrum, meaning that the spatio-spectral intensity has to be extracted from the
measurements.

ΔGDG =

〈

(

〈GD〉(x,y)−〈GD〉(x,y,ω)

)2
〉1/2

(ω)

=
〈

〈

GDxp
〉2
(x,y)

〉1/2

(ω)
(21)

iv) τPC can be measured using a simple wavefront sensor. More precisely, a Shack-
Hartmann-like wavefront sensor can measure the shape of monochromatic wavefronts

#150072 - $15.00 USD Received 28 Jun 2011; revised 25 Jul 2011; accepted 25 Jul 2011; published 18 Aug 2011
(C) 2011 OSA 29 August 2011 / Vol. 19,  No. 18 / OPTICS EXPRESS  17367



but not the phase relation between these wavefronts, that is the spectral phase. However,
to do a similar analysis as in the case of ΔGDG, the measured wavefront ϕxp (x,y,ω0)
at the ω0 frequency can be seen as a centered wavefront ϕ (x,y,ω0)−〈ϕ〉(x,y) (ω0) with-
out any spectral phase information. Thus it becomes simple to get the phase coupling
duration by performing spectrally resolved wavefront measurements, see Eq. (22).

τPC =

〈

(

GD−〈GD〉(x,y)
)2
〉1/2

(x,y,ω)

=

〈

(

∂ϕxp

∂ω

)2
〉1/2

(x,y,ω)

(22)

Therefore, it appears that the four durations can be measured using independent experimental
techniques and various devices, such as an imaging spectrometer, a SPIDER-like system or a
wavefront sensor. In particular, the latter is usually able to measure both the intensity and the
wavefront of a beam. So if the sensor is coupled with a tunable filter for the spectral resolution,
it would allow to also access the spatially resolved spectrum, i. e. to measure ΔtFTG , τAC and
τPC at the same time. Moreover, Hartmann wavefront sensors exist for the XUV range [24], so
such a setup would be potentially usable for XUV attosecond pulses if coupled with selective
XUV mirrors to ensure the spectral resolution. Another way to access the space-time coupling
without spectral phase measurements was given in [25]. The proposed solution is based on
two spatially sheared and phase-shifted replicas of a pulse sent into an imaging spectrometer.
By doing so, one can measure the spatially resolved spectrum along with the variations of the
spectral phase across the beam, and thus get ΔtFTG , τAC and τPC. These simple setups could be
a good way to measure and minimize both amplitude and phase coupling without the need for
complete spatio-temporal characterization techniques.

5. Conclusion

We described a way to summarize the complexity of arbitrary spatio-temporal light pulses into
four elementary durations, namely one fundamental limit and three extra stretch terms. These
three terms highlight the influence of three independent stretch phenomena on spatio-temporal
pulses, named the dispersion of the global group delay, the amplitude coupling and the phase
coupling. We illustrated this decomposition using numerical simulations of femtosecond and
attosecond pulses distorted by various phenomena, such as pulse front tilt or optical aberrations.
Moreover, we discussed a possible way to experimentally measure these durations, and consid-
ered simple setups to retrieve three of these terms without spectral phase characterization. We
conclude that this duration decomposition appears to have the potential to become a useful tool
for describing and characterizing ultrashort light pulses.

6. Appendix A: Duration of an Arbitrary Spatio-Temporal Pulse

We consider the RMS duration ΔtG of the spatially integrated pulse, namely the Global pulse
IG (t):

Δt2
G =

〈

t2〉−〈t〉2 = K−1
∫ +∞

−∞
IG (t) t2dt −

(

K−1
∫ +∞

−∞
IG (t) tdt

)2

(23)

where K stands for a normalization constant and is equal to
∫ +∞
−∞ IG (t)dt.

6.1. Calculation of 〈t〉2

In order to develop Eq. (23), we first calculate 〈t〉2, which leads to Eq. (24):
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〈t〉=
∫+∞
−∞ IG(t)tdt
∫+∞
−∞ IG(t)dt

= K−1 ∫∫∫ +∞
−∞ |E (x,y, t)|2 tdtdxdy

= K−1
∫∫∫ +∞

−∞
E∗ (x,y, t) ·E (x,y, t) t ·dtdxdy (24)

where E∗ (x,y, t) corresponds to the complex conjugate of E (x,y, t). Using Parseval’s theorem,
which gives Eq. (25):

〈t〉=−iK−1
∫∫∫ +∞

−∞
˜E∗ (x,y,ω)

∂ ˜E (x,y,ω)

∂ω
dxdydω (25)

where ˜E (x,y,ω) represents the Fourier transform of E (x,y, t) and is equal to
∣

∣

∣

˜E (x,y,ω)
∣

∣

∣exp(iϕ (x,y,ω)). Hereafter
∣

∣

∣

˜E (x,y,ω)
∣

∣

∣ (resp. ϕ (x,y,ω)) will be written
∣

∣

∣

˜E
∣

∣

∣ (resp.

ϕ). Moreover, since 〈t〉 is a real quantity, we obtain Eq. (26):

〈t〉=−iK−1 ∫∫∫ +∞
−∞

∣

∣

∣

˜E
∣

∣

∣exp(−iϕ)
[

∂ |˜E|
∂ω + i

∣

∣

∣

˜E
∣

∣

∣

∂ϕ
∂ω

]

exp(iϕ)dxdydω

= 0+K−1
∫∫∫ +∞

−∞

∣

∣

∣

˜E
∣

∣

∣

2 ∂ϕ
∂ω

dxdydω (26)

If noticing that K is equal to
∫∫∫ +∞

−∞

∣

∣

∣

˜E
∣

∣

∣

2
dωdxdy, we get Eq. (27):

〈t〉=
∫∫ +∞

−∞

(

∫ +∞
−∞

∣

∣

∣

˜E
∣

∣

∣

2
dω
)

〈GD〉(ω) dxdy

∫∫+∞
−∞

(

∫ +∞
−∞

∣

∣

∣

˜E
∣

∣

∣

2
dω
)

dxdy
=
〈

〈GD〉(ω)

〉

(x,y)
= 〈GD〉(x,y,ω) (27)

Moreover, we can decompose 〈t〉2, leading to Eq. (28):

〈t〉2 = 〈GD〉2
(x,y,ω) =

〈

〈GD〉(x,y)
〉2

(ω)
+
〈

〈GD〉2
(x,y)

〉

(ω)
−
〈

〈GD〉2
(x,y)

〉

(ω)

=
〈

〈GD〉2
(x,y)

〉

(ω)
−ΔGD2

G (28)

6.2. Calculation of
〈

t2
〉

We still have to calculate
〈

t2
〉

in order to get ΔtG. Using Parseval’s theorem leads to Eq. (29):

〈

t2
〉

= K−1 ∫ +∞
−∞ IG (t) t2dt = K−1 ∫∫∫+∞

−∞

[

(

∂ |˜E|
∂ω

)2

+
∣

∣

∣

˜E
∣

∣

∣

2( ∂ϕ
∂ω

)2
]

dxdydω

= K−1
∫∫∫ +∞

−∞

⎛

⎝

∂
∣

∣

∣

˜E
∣

∣

∣

∂ω

⎞

⎠

2

dxdydω +
〈

GD2〉

(x,y,ω)
(29)

Using the definition of the global spectrum SG (ω), see Eq. (6), one can establish Eq. (30):

(

∂ (SG(ω))1/2

∂ω

)2

= 1
4SG(ω)

(

∂SG(ω)
∂ω

)2
= 1

4SG(ω)

(

∫∫ +∞
−∞

∂ |˜E|2
∂ω dxdy

)2
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=
1

SG (ω)

⎛

⎝

∫∫ +∞

−∞

∣

∣

∣

˜E
∣

∣

∣

∂
∣

∣

∣

˜E
∣

∣

∣

∂ω
dxdy

⎞

⎠

2

(30)

Moreover, using the Cauchy-Schwarz inequality allows to get inequality [Eq. (31)]:

(

∫∫ +∞
−∞

∣

∣

∣

˜E
∣

∣

∣

∂ |˜E|
∂ω dxdy

)2

≤ ∫∫ +∞
−∞

∣

∣

∣

˜E
∣

∣

∣

2
dxdy · ∫∫ +∞

−∞

(

∂ |˜E|
∂ω

)2

dxdy

⇔
(

∂ (SG (ω))1/2

∂ω

)2

≤
∫∫ +∞

−∞

⎛

⎝

∂
∣

∣

∣

˜E
∣

∣

∣

∂ω

⎞

⎠

2

dxdy (31)

We can introduce the Amplitude Coupling Duration τAC which is a positive or null quantity
homogenous to a duration:

K−1
∫ +∞

−∞

(

∂SG (ω)1/2

∂ω

)2

dω + τ2
AC = K−1

∫∫∫ +∞

−∞

⎛

⎝

∂
∣

∣

∣

˜E
∣

∣

∣

∂ω

⎞

⎠

2

dxdydω (32)

It is easily checkable that τAC is null if
∣

∣

∣

˜E
∣

∣

∣ can be written as a product of a spectral function

with a space-dependent function, that is if there is no coupling on the spatio-spectral amplitude.
Moreover:

K−1
∫ +∞

−∞

(

∂SG (ω)1/2

∂ω

)2

dω = K−1
∫ +∞

−∞
IFTG (t) t2dt = Δt2

FTG
(33)

where IFTG (t) is the Global Fourier Transform limited pulse which is, by definition, obtained
by calculating the Fourier transform of the amplitude of SG (ω) for a zero spectral phase. If
noticing that the squared Fourier transform limited pulse duration at a given point Δt2

FT (x,y) is

equal to
∫ +∞
−∞

(

∂ |˜E|
∂ω

)2

dω/
∫ +∞
−∞

∣

∣

∣

˜E
∣

∣

∣

2
dω , we get Eq. (34):

K−1
∫∫∫ +∞

−∞

⎛

⎝

∂
∣

∣

∣

˜E
∣

∣

∣

∂ω

⎞

⎠

2

dxdydω =

∫∫ +∞
−∞

(

∫ +∞
−∞ |E|2 dt

)

Δt2
FT (x,y)dxdy

∫∫ +∞
−∞

(

∫ +∞
−∞ |E|2 dt

)

dxdy
=
〈

Δt2
FT (x,y)

〉

(x,y)

(34)
Using Eqs. (29), (32), (33) and (34) leads to Eq. (35):

〈

t2〉= Δt2
FTG

+ τ2
AC +

〈

GD2〉

(x,y,ω)
(35)

where τAC is equal to
〈

Δt2
FT (x,y)−Δt2

FTG

〉1/2

(x,y)
.

Finally, using Eqs. (23), (28) and (35), one can get the RMS global pulse duration, see
Eq. (36):

Δt2
G = Δt2

FTG
+ τ2

AC +
〈

〈

GD2
〉

(x,y)

〉

(ω)
−
〈

〈GD〉2
(x,y)

〉

(ω)
+ΔGD2

G
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= Δt2
FTG

+ΔGD2
G + τ2

AC + τ2
PC (36)

where τPC is equal to
〈

〈

GD2
〉

(x,y)−〈GD〉2
(x,y)

〉1/2

(ω)
, which can be rewritten

〈

(GD−GDG)
2
〉1/2

(x,y,ω)
. It should be noticed that if there is no coupling on the spatio-

spectral phase, that is if GD does not depend on space, τPC is null whatever the spectral
phase.
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