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Abstract: We report statistical fluctuations for the transmissions of a series 
of photonic-crystal waveguides (PhCWs) that are supposedly identical and 
that only differ because of statistical structural fabrication-induced 

imperfections. For practical PhCW lengths offering tolerable −3dB 

attenuation with moderate group indices (ng≈60), the transmission spectra 

contains very narrow peaks (Q≈20,000) that vary from one waveguide to 
another. The physical origin of the peaks is explained by calculating the 
actual electromagnetic-field pattern inside the waveguide. The peaks that 
are observed in an intermediate regime between the ballistic and localization 
transports are responsible for a smearing of the local density of states, for a 
rapid broadening of the probability density function of the transmission, and 
bring a severe constraint on the effective use of slow light for on-chip 
optical information processing. The experimental results are quantitatively 
supported by theoretical results obtained with a coupled-Bloch-mode 
approach that takes into account multiple scattering and localization effects. 

©2010 Optical Society of America 

OCIS codes: (130.2790) Guided waves; (130.5296) Photonic crystal waveguides; (220.4241) 
Nanostructure fabrication; (290.4210) Multiple scattering; (999.9999) Slow light transport; 
(999.9999) Disorder induced losses; (999.9999) Anderson localization; (999.9999) Coupled-
mode theory. 
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1. Introduction 

The group velocity of light can be controlled by material resonances, such as the sharp 
absorption transitions of an atomic vapour, or by material engineering, such as man-made 
resonant devices. The second method represents a promising solution for on-chip buffering, 
time-domain processing and switching of optical signals [1] and consists of synthesizing 
artificial materials, in which photons tunnel from one site to another, thereby incurring a 
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delay. Control over slow light may also improve the phase control in interferometric 
modulators and the performance of phased-array beam shapers. Since the initial observation 
of a 40-fold reduction of the group velocity in a Photonic-Crystal Waveguide (PhCW) [2], 
improvements in design and fabrication have led to a series of impressive milestones obtained 
with in-line devices, such as coupled ring-resonators or PhC geometries [3–8] with 

nanosecond delays on small (≈10
2
-10

3
 µm

2
) footprints. However, these promising results are 

limited by the impact of inevitable random fabrication fluctuations on slow-light transport [9], 
which may eventually lead to photon localization [10,11] for intentionally large disorders. 

The present work is not devoted to the study of light localization in PhCWs, but rather to 
understand what is the impact of disorder on the light transport in practical situations of slow 
light transport. Hereafter, we will refer to the terminology classically used for the electronic 
transport in 1D systems [12–14], distinguishing the ballistic regime that is obtained for 
waveguide lengths L much smaller than the localization length lc [15], and the localization 
regime obtained for L>>lc. More specifically, we will be concerned by the intermediate 

regime, L≈lc, which offers a good compromise between loss and delays. 
To our knowledge, most of experimental analyses of slow light based on man-made 

resonances rely on measurements performed on a single device [1–7,10,11,16–21]. If we do 
not refer to sensitive arguments by invoking ergodicity, this actually precludes observing the 
fundamentals of the slow-light transport that heavily rely on ensemble averaged quantities 
[22] discussed here. In Section 2, we collect information on a series of 18 PhCWs that are 
nominally identical and that only differ by statistical structural imperfections. We consider 
practical situations that are typically encountered in applications, obtained for PhCWs with 

modest lengths (≈100 µm) and modest group velocities (c/20-c/60). Importantly, in Section 3, 
we infer “termination-less” transmission from the transmission spectra measured in Section 2. 
Consistently with recent theoretical predictions [14], we observe that, even for practically-

relevant devices that offer 3dB losses on average (L≈lc), the PhCW transmission strongly 
varies from one sample realization to another, see Section 4. By calculating and measuring the 
field-pattern inside the waveguide in Section 5, we further interpret this phenomenon, critical 
for applications of slow light, as a consequence of randomly embedded local spatial modes 
that are premises of the localization regime and that coexist with extended stationary-field 
modes with a substantial back-propagating component. 

2. Photonic crystal waveguide fabrication and characterization 

We have fabricated 18 PhCWs formed by a single missing row of holes in the ΓK direction of 
an hexagonal lattice of air holes (so-called “W1” PhCWs, as shown in Fig. 1). These 18 
guides are designed to be identical and only differ by the residual imperfections left by our 
state-of-the-art fabrication. They were patterned into the 220nm thin silicon layer of a silicon-
on-insulator substrate using electron beam lithography. The positions of the air holes are fixed 
in a hexagonal array with a lattice constant a = 420 nm and a hole radius r = 0.3a. Once the 
holes were etched with a chlorine-based inductively coupled plasma reactive ion etching into 
a 220-nm-thick silicon layer, the buried oxide layer was removed with a hydrofluoric acid 
solution forming a free standing PhC slab. The band structure of the fundamental Bloch mode 
is shown in the top inset of Fig. 1. It has been calculated with a Fourier Bloch-Mode Method 

[23] for geometric parameters directly measured on the waveguide [24]. For a/λ≈0.27, the 
fundamental Bloch mode exhibits anomalous dispersion: the group velocity (calculated as 
dω/dk) gradually decreases as the wavevector approaches the Brillouin zone boundary 

(λ≈1560 nm). As illustrated in the scanning electron microscope (SEM) image in Fig. 1, the 
185a-long waveguides are connected to 3-mm-long ridge access waveguides. Additionally 
and very importantly for the following analysis, the ridge-to-PhCW interfaces incorporate a 

fast-slow transition that enables efficient injection, even for group velocities as low as 10
−2

c 
[26]. 
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Fig. 1. Scanning Electron Microscope image of a single-row-missing PhCW. The wafer is 
composed of a series of twenty supposedly identical parallel waveguides etched into a Si-
membrane. The top inset shows the dispersion diagram of the ideal waveguide, calculated for 
the geometric parameters actually measured on the device and for a 3.48 Si refractive index. 
The bottom inset represents an enlarged view of the injector [26] used for efficient coupling 
between the ridge-access waveguide and the PhCW. 

Figure 2(a) shows two of the 18 measured transmission spectra. The transmission spectra 
are recorded by coupling TE-polarized light from a tunable external laser source (1520-1620 
nm) via a polarization-maintaining fiber connected to a microlensed fiber. After passing 
through the device, the light emitted by the rear cleaved facet is collected by an infinity-
corrected infrared objective ( × 80, NA = 0.8) and its intensity is monitored by an InGaAs 
photodiode as the coherent source’s wavelength is scanned [27]. 

In order to relate wavelengths to averaged group velocities, we also measure the group-
index spectrum of every PhCW using an interferometric setup [28]. For 185a long 
waveguides, ng values up to 120 can be recovered with a Fourier transform analysis of the 
interferograms. Figure 2(b) shows the ng(λ) curves recorded for every waveguide. For large ng 
values, the recorded ng(λ) curves are not identical and present disorder-induced variations. In 
agreement with previous theoretical and experimental studies [17,19,29], the disorder is found 
to smear the band-diagram of the ideal waveguide at the boundary of the Brillouin zone. By 
averaging over the 18 samples the group index data for every wavelength, we infer an 
averaged ng(λ) relationship (solid black curve). The latter is used for relating wavelengths to 
average group velocities in the following. 

3. Termination-less transmission spectra 

The measured transmissions do not correspond to the so-called transmission in classical 
studies of the electronic (or photonic) transport of 1D electronic wires [12–14]. The actual 
spectra are contaminated by two effects, the reflection on the cleaved faced (this is specific to 
our design) and the reflection at the PhCW termination (this is inevitable). Although the later 
is critical, it is rarely considered in the literature and one often neglects its impact. In this 
Section, we describe our approach to derive “termination-less” transmission spectra from the 
measured ones. 

3.1 Interpretation of the experimental data 

Inspecting Fig. 2(a), we see that, for λ<1556 nm, the PhCW attenuation is negligible 
(5dB/cm) and the high-frequency oscillations are mostly Fabry-Perot fringes induced by the 
30% reflectance of the cleaved facets. For λ>1556 nm (ng>25), the transmission spectra 
exhibit two main features: a drop of the transmission and the presence of very large and rapid 
oscillations. This is consistently observed in all the recorded spectra. The drop is primarily 
attributed to the extrinsic losses of the PhCWs that are important for slow-light. In general, an 
increase of the attenuation is expected to produce a lowering of the Fabry-Perot-fringe 
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contrast induced by the reflection on the cleaved facet. But this is not what we observe: the 
recorded spectra exhibit intense and sharp peaks in the transmission, with small spectral 
linewidths (Q = λ/∆λ~20,000) and with an intensity modulation that is even larger than that 

achieved at smaller wavelength with ng≈4. One may naturally argue that the enhancement of 
the modulation contrast is due to the group-velocity impedance mismatch at the interface 
between the ridge-access waveguide and the PhCW, since this mismatch is known to result in 

an increased modal reflection that scales as 1–A(ng)
−1

, where A is a constant factor. 

 

Fig. 2. Experimental data collected for the twenty PhCWs. (a) Spectra of two different 
waveguide instances (black and red curves). ng dependence (top axis) is deduced from 
interferometric measurements (b) ng(λ) curves recorded for every waveguide. The large 

spreading at large ng’s (inset) results from disorder−induced fluctuations that smear the sharp 
cutoff at vg = 0. The thick-black curve represents the ensemble-averaged curve used to relate 
the actual wavelength to an averaged group index. 

Ideally, two independent requirements have to be met in practice at the PhCW interfaces. 
Firstly the coupling efficiency should be independent of ng allowing a direct comparison 
between the energy transmitted at two different wavelengths. Secondly the backreflection 
should be as small as possible. We have carefully taken into account both requirements when 
designing the wafer by incorporating injectors with coupling efficiencies larger than 95% for 
ng<100. The 5% losses are due mainly to out-of-plane scattering into the air-cladding. Thus 
backreflection is actually critically low, below 1% as shown by the 3D computational results 
in [26]. 

To further analyse the experimental data, we have performed fully-vectorial 3D 
calculations. These calculations include the light propagation into the access waveguide, the 
reflection on the cleaved facets, the coupling through the injector and the propagation in the 
185a-long disordered PhCW section. Indeed, the difficult part consists in modeling the light 
transport through the PhCW. This is performed by using a recently developed approximate 3D 
coupled-Bloch-mode method [14,23]. In contrast to perturbation methods developed in earlier 
works [30–34], the present method takes into account important factors, such as out-of-plane 
leakage, in-plane multiple scattering inside a single hole and between holes, and localization 
effects that are virtually always present in 1D systems in the presence of multiple 
backscattering. The calculated data are shown in Fig. 3(a). They quantitatively reproduce all 
the salient features of the experimental curves in Fig. 2(a), in particular the transmission drop 
and the intense oscillations for large wavelengths. 

The calculated spectrum has been obtained by assuming a size disorder model, in which 
only the hole radii of the two inner rows (these are the rows that are dominantly interacting 
with the waveguide mode field) are randomly and independently (distinct etched hole have 
fully-independent deformations) varied around their mean nominal value of 0.3a with a 
statistical Gaussian distribution of standard deviation σ = 1.7 nm, obtained by fitting the 
average value of the transmission (see the next Section). The disorder-model choice is 
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motivated for its simplicity, which allows us to carefully take into account multiple scattering 
effects between independent holes inside a single cell, and between different cells. The model 
is likely not to be highly accurate, since realistic deformation models should additionally 
include surface roughness and hole displacements. Indeed, our objective is not to provide a 
complete, fully-accurate and comprehensive modeling of light transport (this would require to 
perfectly know all the hole deformations over the 100-µm long PhCWs), but rather to use a 
generic tool that allows us to reproduce all the salient features of the measured spectra and to 
quantify the respective role of different mechanisms associated to the light transport. 
Although our model is simplistic (it relies on a single fitting parameter σ), we believe that it 
contains all the basic ingredients (out-of-plane loss, backscattering, multiple scattering) that 
are encountered in experiments. This statement is additionally confirmed by the comparison 
of the numerical spectra in Fig. 3 with the experimental ones in Fig. 4. The agreement is very 
good on overall, despite the fact that the resonance peaks and spikes are not located at the 
same spectral positions (this would require a perfect knowledge of the deformation). 

 

Fig. 3. Test of the median-filter method with purely-calculated transmission spectra. (a) 
Typical transmission spectrum calculated by including light injection from the ridge to the 
PhCW and multiple-reflection on the ridge cleaved facets. (b) Termination-less transmission 
spectrum obtained by directly calculating the transmission of the disordered PhCW used for the 
calculation in (a). (c) Transmission spectrum obtained by filtering the curve in (a). Although 
the filtering process is imperfect, it provides reliable estimates for the termination-less 
transmission. 

The curve in Fig. 3(b) shows the transmission spectrum obtained by calculating the 
transmittance through the 185a-long PhCW alone with the same disorder instance. In this 

“termination-less” spectrum that is free from any spurious back-reflections at the access−ridge 
facets or at the ridge-PhCW interfaces, it is remarkable that the transmission drop is again 
assisted by rapid and sharp oscillations, with Q values comparable to the experimental ones. 
This provides a firm confirmation that the experimental oscillations at long wavelengths  
[Fig. 2(a)] are intrinsically due to the fabrication imperfections, and not to any spurious 
backscattering introduced by termination facets. 

3.2 Post-processing the experimental transmission spectra 

Because of the high reflectance at the cleaved facets, the experimental transmission spectra 
have been processed before further analysis. The processing is achieved with a median filter 
with a frequency-dependent window that depends on the local group index of the analyzed 
data. Before being applied to the experimental data, the processing technique has been first 
validated with the numerical data. Figure 3(c) shows the filtered transmittance spectrum 
obtained by applying the median filter to the numerical data of Fig. 3(a). As shown, the 
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filtering largely smoothes the Fabry-Perot oscillations for ng≤10, but preserves the sharp peaks 
for larger ng‘s. 

Figures 4(a) and 4(c) show two experimental spectra [they are identical to those previously 
shown in Fig. 2(a)] and the associated filtered spectra, see Figs. 4(b) and 4(d). The insets 
show two intense peaks obtained from the filtered spectra. Both of them exhibit Q values of 

≈20,000, just like in the theoretical data of Figs. 3(b) or 3(c). Finally, let us note that the 
theoretical spectra for the termination-less or for the filtered cases share the same 
characteristics as those of the filtered experimental spectra. 

 

Fig. 4. Examples of experimental filtered spectra (b) and (d) used in the following statistical 
analysis. The corresponding measured spectra are shown in (a) and (c). The red arrows point at 
the spectral locations of the insets. Note the important similarities between the filtered spectra 
and the theoretical spectra of Figs. 3(b) and 3(c). 

4. Probability density function for the transmission 

Let us first consider ensemble-averaged quantities over the 18 waveguides. After filtering, 
ensemble-averaged quantities, denoted by <•>, are first calculated using classical statistical 
treatments. Note that the averaging is performed for a fixed wavelength. We then use the 
black curve in Fig. 2(b) to relate the wavelength to an average group-index. Figure 5 shows 
the ng-dependence of the averaged transmission <T>. The ensemble-averaged experimental 
data (thick-black curve) quantitatively agree with the theoretical data (red curve) obtained by 
averaging 1000 termination-less transmission spectra for random independent disorder 
realizations with the same disorder level σ = 1.7 nm. As shown in the inset, the value σ = 1.7 
nm is chosen because it offers the best fit with the experimental data. We regard this value as 
reasonably acceptable in view of [25], where the authors analyse 30 high-resolution SEM 
pictures of e-beam written PhCWs of various material and report standard deviations between 
1.5 and 3.5 nm depending on the different materials and fabrication techniques. The case <T> 
= 0.5 is conceptually important as it marks the transition between the ballistic and localization 

regimes [15] (L≈lc, strictly speaking, L = lc corresponds to <T> = 1/e) and practically 
interesting as it offers a reasonable compromise between delay and losses. 
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Fig. 5. Comparison between the experimental results (black) and the model predictions (red) 

for the averaged transmission <T>. The experimental ensemble−averages are collected over N 
= 18 independent realizations. Those of the theoretical data are collected over 1000 
independent realizations with σ = 1.7 nm. The vertical bars represent the statistical error 
σT/N1/2. The inset is a log-log representation for different values of the standard deviation of the 
hole diameter, σ = 1 nm (green), σ = 1.7 nm (red), σ = 2 nm (blue). 

Figure 6 compares 18-bin experimental histograms gathered at different group velocities 
that correspond to <T> = 0.9, 0.5 and 0.1 with the theoretical probability density function 
P(T) (red curve). Note that, like the theoretical curves obtained by collecting 5.10

5
 

independent disorder realizations, are normalized such that ∫[0;1] P(T)dT = 1. Again the 
agreement is quantitative. Both the experimental and computational data predict a very large 

standard deviation (σT
2
 = <T

2
>–<T>

2
), σT≈0.28, a value which is actually comparable with the 

standard deviation 1/(12)
1/2

 = 0.288 of a uniform distribution with equidistributed values in 
the interval [0 1]. This probability density function broadening is a direct consequence of the 
presence of peaks in the transmission spectra of Figs. 2, whose resonant frequencies vary from 
one realization to another. 

 

Fig. 6. Histograms (black bars) of the 18 values of the transmission for <T> = 0.9 (a), <T> = 
0.5 (b) and <T> = 0.1 (c). The red curves are the corresponding calculated probability density 
function obtained by collecting 5.105 independent disorder realizations at the corresponding 
ng’s, ng = 25 (a), 55 (b) and 90 (c). The bar width of the experimental data is ∆T = 0.05 and the 
bar heights are normalized such that ΣpPp(T)∆T = 1, to allows us for a direct comparison with 
the theoretical data. 

5. Field pattern at peak transmission 

To further understand the properties of the slow-light transport around <T>≈0.5, let us 
examine the field pattern in the PhCW. In the coupled-Bloch mode formalism [14,23], the 
electromagnetic field in the PhCW is expressed as a superposition of the backward- and 
forward-propagating fundamental Bloch modes, which exchange their energy and which 
scatter in the air clad as they propagate along the z-direction. Let us denote by c

+
(z) and c

–
(z) 

the excitation coefficients of the fundamental forward- and backward-propagating Bloch 
modes, and let us normalized these Bloch modes such that the flux of the z-component of their 
Poynting vector across a transverse surface are unitary. Thus |c

+
(z)|

2
 and |c

–
(z)|

2
 represent the 

local energy flowing in the positive and negative z-directions in the PhCW. 
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Fig. 7. Field pattern inside a 185-a-long PhCW for the ballistic (left, ng≈40, L≈0.25lc), 

intermediate (middle, ng≈65, L≈1.3lc) and localization (right, ng≈105, L≈6lc) regimes. Top: 
Calculated data for termination-less PhCW showing the forward- and backward-propagating 

Bloch mode intensities, |c+(z)|2 (red) and |c−(z)|2 (blue). Note the changes of the vertical axes. 

Middle: The calculated out-of-plane losses, ∂(|c+|2−|c−(z)|2)/∂z (black). Bottom: Far-field 
patterns obtained by imaging the sample surface onto an IR-camera. Note that since the 
experimental and theoretical data do not correspond to the same disorder instance, the spike 
locations in the black curves and in the images are not expected to be identical. In all graphs, 
light is incoming from the left side. Note that the color scale is logarithmic. 

|c
+
(z)|

2
 and |c

−
(z)|

2
 are respectively shown with the red and blue curves in the top part of Fig. 7. 

They are calculated with the coupled-Bloch mode formalism for termination-less 185a-long 
disordered PhCWs illuminated from the left side (z = 0) with a unitary excitation, c

+
(0) = 1 

and c
−
(L) = 0. The curves are gathered for specific resonance wavelengths corresponding to 

intense transmission peaks (|c
+
(L)|

2≈1). With many calculations obtained for different 
realizations of disorder, we have verified that these peaks occur for typical field patterns in the 
waveguide. The chosen examples represent normal behaviors of the field pattern rather than 
the exception. 

Perfect transport for disorder-free PhCWs would correspond to c
+
(z) = 1 and c

−
(z) = 0 for 

any z, a situation that is roughly observed for the ballistic transport regime obtained for <T> = 

80% (L = 0.25 lc, ng≈37) and shown in the upper-left side of Fig. 7. As ng increases, 
backscattering becomes the dominant mechanism for loss. The field pattern becomes an 
intense and almost stationary pattern (it would be perfectly-stationary in the absence of out-of-
plane losses), of which maximum intensities rapidly grow as ng increases. For <T> = 50% (L 

= lc, ng≈65), the intensity of the back-reflected Bloch mode may locally be 5-times larger than 
the incident intensity. This is a remnant of a delocalized Fabry-Perot-like resonance induced 
by a distributed back-reflection with fixed boundary conditions, |c

+
(0)|

2
 = 1 and |c

–
(L)|

2
 = 0. 

As one moves to slightly larger ng’s, backscattering becomes much stronger than out-of-plane 
losses and one enters the localization regime. The stationary-field becomes stronger and this 
enhancement is accompanied by the emergence of localized states evidenced by the rapid 
spatial variations of |c

+
|
2
 or |c

–
|
2
 at <T> = 5% (L = 6lc). As shown by other calculations, the 

latter are due to the formation of short (but efficient) reflective sections in the PhCW. Thus in 
addition to the Fabry-Perot extended resonance, the transport is assisted by the formation of a 
series of localized states that are coupled to each other and that we are inclined to interpret as 
the necklace states [35,36] initially proposed in [37] to explain the observation of full 
transmission of electrons in 1D disordered systems. 
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These theoretical predictions are not easy to evidence experimentally, since the coupled-
mode coefficients are connected to guided waves that are bound to the structure. They can 
however be indirectly checked by considering that the spatial derivative of the net energy 

flow, ∂(|c
+
|–|c

–
|)/∂z [38], is a related quantity that represents the out-of-plane leakage rate (for 

absorption-free materials) and that is easily measured experimentally. The calculated loss 
patterns are shown in arbitrary units with the black curves in the middle part of Fig. 7. There 
are two common important features. Firstly, the curves are all spiky, with a large (two order of 
magnitude is typical) modulation showing that the out-of-plane losses strongly vary from one 
cell to the other. Secondly, the out-of-plane losses rapidly increase with ng, a 50-fold 
enhancement being predicted as <T> decreases from 80% (left) to 5% (right). 

The existence of these spiky patterns has been quantitatively confirmed by recording the 
far-field images of the PhCW out-of-plane losses, using an infinity-corrected infrared 
objective ( × 80, NA = 0.9) to image the sample surface on an IR-camera. The images, which 
have been gathered under the same conditions as the theoretical ones for wavelengths 
corresponding to transmission peaks and for similar ng values, are shown in the lower part of 
Fig. 7; they quantitatively confirm all the salient features of the theoretical predictions, 
including the spiky profile, the existence of PhCW sections with weak losses even at large 
ng’s and the rapid increase of the peak-intensity of the spikes and of their contrast with ng. 

6. Conclusion 

The prime requirement on photonic materials is that they exhibit low loss, or that at least the 
loss is sufficiently well characterized that it can be compensated appropriately. The fibre optic 
network, where 10s of dB of loss are commonly compensated with amplifiers, is a typical 
example. Slow light materials based on natural or artificial resonances are assumed to follow 
similar rules. Here, we have shown that this determinism is only true in the ballistic transport 
regime. 

Even for relatively small waveguide lengths (L = 100-200a) and group indices (ng≈50) 
operating at the border between the ballistic and the localization regimes, the slow-light 
transport in real PhCWs strongly departs from the perfect Bloch-mode propagation in periodic 
systems. Because of the enhanced distributed backscattering evidenced by the ratio of the c

+
 

and c
−
 coefficients, we have shown that the field-pattern contains a substantial back-

propagating component that is larger than the incident field itself, which may be understood as 
an extended stationary mode rather than as a propagating slow Bloch mode. The standard 
single-row-missing PhCW geometry studied here is only one specific (and not necessarily the 
best) candidate for slow-light circuitry, but we believe that the present results also apply more 
generally to corrugated waveguides (or coupled-cavity [39]) operated in a regime for which 
backscattering is the dominant loss mechanism. This highlights the need for developing new 
designs of slow light waveguides with a lower backscattering coefficient; if the attenuation is 
dominated by out-of-plane scattering, localization will not occur and the simple picture of 
slow light as a slowly propagating Bloch mode will indeed apply. Alternatively, the strong 
build-up shown in Fig. 7 may be beneficial for nonlinear optics or lasing applications [1]. 

Acknowledgments 

This research is supported under the European contract SPLASH of the 6th EU Framework 
program. Simon Mazoyer thanks the DGA for financial support. This work is part of the 
research program of FOM, which is financially supported by NWO. M. S. acknowledges the 
support of the European Community under the Marie Curie Scheme (Contract No. MEST-CT-
2005-021000). 

#128202 - $15.00 USD Received 10 May 2010; revised 6 Jun 2010; accepted 6 Jun 2010; published 23 Jun 2010
(C) 2010 OSA 5 July 2010 / Vol. 18,  No. 14 / OPTICS EXPRESS  14663




