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Spatial light modulators are often used to implement phase modulation. Since they are pixelated, the
phase function is usually approximated by a regularly sampled piecewise constant function, and the
periodicity of the pixel sampling generates annoying diffraction peaks. We theoretically investigate
two pixelation techniques: the isophase method and a new nonperiodic method derived from the Voronoi
tessellation technique. We show that, for a suitable choice of parameters, the diffraction peaks disappear
and are replaced by a smoothly varying halo. We illustrate the potential of these two techniques for
implementing a lens function and wavefront correction. © 2011 Optical Society of America
OCIS codes: 050.1940, 230.6120.

1. Introduction

Spatial lightmodulators (SLMs) are components that
can be used to implement spatially varying phase
modulations [1,2]. They are useful for implementing
optical functions in imaging or wavefront correction
[3,4]. Their aperture is divided into small cells, called
pixels, that are usually square- or rectangle-shaped
and distributed periodically. Because of this periodic
arrangement, the diffraction patterns are affected by
artifacts that take the form of periodically distributed
diffraction peaks in the Fourier plane. For example, it
has been shown that pixelated lenses displayed on an
SLM can produce a large number of equally intense
replica images [1,5–8]. The shape and intensity of
the diffraction orders produced by those components,
responsible for a multiple imaging effect, have been
investigated in several earlier publications [5–8].
Our objective in this paper is to reduce these diffrac-
tion peaks by introducing disorder in the regular
square-shaped structure of the modulator. We study

and compare two ways to implement this idea: the
so-called isophases and the Voronoi diagrams. The
Voronoi technique already showed its capability to re-
duce diffraction peaks when only the diffraction by
the walls between the pixels is taken into account
[9]. In Ref. [9], we considered periodic or nonperiodic
arrangements of pixels but with one and the same
uniform phase in all pixels. In the present work, we
extend the investigation to the practically more im-
portant case where a phase function is encoded onto
the SLM. Therefore, even with a periodic arrange-
ment of thepixels, theSLMtransmittance isnot aper-
iodic function. The periodicity nevertheless creates
diffraction peaks. Suitable nonperiodic arrangements
will be shown to circumvent the problem. In the pre-
sent work, as opposed to Ref. [9], the walls between
pixels areneglected,whichmeans theyare considered
infinitely thin.

In this paper, our main focus will be on the design
of structures with desired diffraction properties,
and we will not address the issue of their practical
realization.

The paper is organized as follows. In Section 2, we
introduce two nonperiodic pixelation techniques, and
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we illustrate their performances by considering the
implementation of a pixelated lens. In Section 3,
we compare their capacities for the correction of dif-
ferent types of optical aberrations, and we finally
conclude in Section 4.

2. Comparison of Different Pixelation Methods

In order to reduce the diffraction peaks, our idea is to
introduce disorder in a regular SLM. In this section,
we investigate two different techniques to implement
this idea. We compare their performances by consid-
ering the implementation of a pixelated lens of focal
length f , which, in the Fresnel approximation, corre-
sponds to the following phase function:

φdðx; yÞ ¼
π
λf ðx

2 þ y2Þ: ð1Þ

A. Pixelation of a Phase Function

Let us denote φidealðx; yÞ the continuous ideal phase
that we want to implement. Pixelation consists in ap-
proximating φidealðx; yÞ with a piecewise constant
function, so that each cell of the SLM has a constant
phase value φp, chosen to minimize the quantity of
diffracted light. Throughout this investigation, we
assume that the difference between φidealðx; yÞ and
φp remains moderate, so that the effect of pixelation
can be analyzed based on an expansion of their dif-
ference. For a given pixel covering the domain D, the
value of φp that minimizes the diffraction losses is
such that the square deviation σ2Φ with φidealðx; yÞ
is minimum (Maréchal criterion [10]):

σ2Φ ¼
ZZ

D
ðφidealðx; yÞ − φpÞ2dxdy: ð2Þ

We look for the phase φp that minimize σ2Φ, which
means

∂

∂φp

ZZ
D
ðφidealðx; yÞ − φpÞ2dxdy ¼ 0: ð3Þ

If we call s the surface of a cell, one gets

φp ¼ 1
s

ZZ
D
φidealðx; yÞdxdy: ð4Þ

As a result, we will associate to each cell the average
of the ideal phase function over its area.

As an example, let us consider the case of a lens
whose phase function is defined by Eq. (1) and of focal
length f ¼ 2m, implemented on an SLM with
square-shaped pixels whose pixel pitch is equal to d.
We assume that it is illuminated by amonochromatic
plane wave of wavelength λ ¼ 0:5 μm, propagating
parallel to the optical axis, and we observe the distri-
bution of light intensity in the focal plane. The mod-
ulator’s aperture is a disc of diameter 4mm. Let ðξ; ηÞ
be the coordinates of a point in the focal plane; we
call relative intensity Eðξ; ηÞ the ratio given by

Eðξ; ηÞ ¼ Iðξ; ηÞ
Iairy

; ð5Þ

where Iðξ; ηÞ is the intensity diffracted by the pixe-
lated lens, and Iairy is the intensity in the central lobe
of the Airy pattern that would be generated by the
clear aperture in the same focal plane. As a result,
the Strehl ratio S [11] can be defined as

S ¼ maxðEðξ; ηÞÞ: ð6Þ

In Fig. 1, we have considered an SLM with square-
shaped pixels. The pixel pitch is equal to d ¼ 100 μm.
In Fig. 1(c), we have represented the relative in-
tensity Eðξ; ηÞ obtained with the SLM structure of
Fig. 1(b), as well as a cross section in the horizontal
direction in Fig. 1(d). To account for the spatial inte-
gration by the sensor, we have spatially averaged the
relative intensity by a convolution with a rectangular
function of width 1 arc min. As a result of this aver-
aging, the observed diffraction peaks do not have the
aspect of the derivative of the Bessel function J1ðXÞ

X , as
described in [8]. Figures 1(c) and 1(d) illustrate the
well-known fact that the intensity distribution in
the focal plane of a square-shaped modulator con-
sists of a zeroth order, located at zero diffraction an-
gle [highlighted by a circle on Fig. 1(d)] and of higher
orders (peaks) periodically distributed with an angu-
lar period equal to λ=d. For example, the first-order
peak is highlighted by a dotted circle on Fig. 1(d). As
the focal length of the pixelated lens decreases, the
diffraction peaks create replica lens patterns which
are responsible for a multiple imaging effect [1,5–8].
In this paper, we will consider that the focal length
and sampling rates are such that this multiple ima-
ging effect is avoided. In Subsections 2.B and 2.C, we
investigate two ways of reducing these diffraction
peaks.

B. Pixelation by Isophases

The first method we choose to investigate is the
pixelation by isophases. To begin with, we shall pre-
sent its principle and next illustrate its application to
a pixelated lens.

The pixelation principle is explained in Fig. 2. The
phase function is considered as a function z ¼ φðx; yÞ
and is sliced by equally spaced horizontal planes
z ¼ 2kπγ, where k is an integer and γ is a real number.
The projections on the SLM of the intersections be-
tween each of these planes and the phase function
define the shapes of the isophase cells. For a better
understanding of the repartition of the cells, we re-
present in Fig. 3 the pixelation by isophases for a lens
with f ¼ 2m for γ ¼ 0:1. Each cell is an annulus with
a given width. In our case, the annuli draw closer
when the slope of the phase function increases. As
a result, there is no periodicity in the pixelation,
and higher-order diffraction peaks do not exist.

Themain issue is to choose the value of γ. Of course,
the smaller γ is, the better, since it will lead to
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a better approximation of the ideal phase. However,
there is a lower limit due to technological reasons:
the thinnest annulimust be technologically realizable
by using the appropriate lithographic equipment. As
a compromise, we consider here that no isophase an-
nulus thinner than some minimal distance dmin will
be authorized. When γ is very small, as in Fig. 4(a)
with γ ¼ 0:05, most cells have the minimal size
dmin. This situation is equivalent to a periodic pixela-
tion and produces diffraction peaks. When γ is larger,
as in Fig. 4(c) with γ ¼ 0:15, the distance between the
isophases is larger and undersampling effects may
arise. There is thus an optimum value for γ that re-
duces the diffracted relative intensity at angle
λ=dmin (first-order peak). It corresponds to a phase

profile where the distances between the isophases
are different from another, with few cells of size
dmin [see Fig. 4(b)]. For our simulations of a lens func-
tion of focal length f ¼ 2m, we have chosen dmin ¼
50 μm and γ ¼ 0:1.

Let us now compare the isophase pixelation with
the regular square-shaped one of period d ¼ 100 μm
while implementing a pixelated lens. In Fig. 5, we
have plotted a horizontal section of the diffraction re-
lative intensities of both pixelation techniques. We
notice that the angular distribution of the relative in-
tensity is more uniform with the isophases than with
the regular grid. Instead of diffraction peaks, we
have a smoothly varying halo. Moreover, outside the
zero-order peak, the maximum of the diffracted

(a) (b)

(c) (d)
Fig. 1. (Color online) SLMwith square-shaped pixel, pixel pitch d ¼ 100 μm. Pupil diameter of 4mm. (a)Walls only. (b) Implementation of
a pixelated lens of focal length f ¼ 2m. (c) Diffracted intensity by the pixelated SLM. (d) Corresponding cross section of (c) in the horizontal
direction.

Fig. 2. (Color online) Principle of the pixelation by isophases. The
phase function is sliced by equally spaced horizontal planes z ¼
2kπγ (k, integer, and γ, a real number).

(a) (b)
Fig. 3. (Color online) Lens of focal length f ¼ 2m encoded in an
isophase modulator. (a) Isophases only. (b) Phase in the modulator.
Pupil of 4mm diameter.
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intensity is always inferior to −50 dB for the iso-
phases. This residual halo is less annoying than dif-
fraction peaks for a human observer or the automatic
analysis of the images.

We can see in Table 1 that the Strehl ratio [see
Eq. (6)] obtained with the isophases is better than
the one obtained with the regular square grid. In
Table 1, we have also represented G, the difference

in decibels between the relative intensity of the first-
order peak of the square grid and the relative inten-
sity of the maximum of the halo created by the
isophases: it is equal to 28dB. The isophase techni-
que is thus efficient, but the shape of the cells is spe-
cific to a given phase function. So, in Subsection 2.C
we propose another technique whose advantage is to
lead to a pixelation pattern that is independent of the
implemented phase function.

C. Pixelation by Voronoi Diagrams

A Voronoi diagram [12] is a partition of the plane
built on n generating points pi, i ∈ ½1;N�. The parti-
tion consists of convex polygons such that each poly-
gon contains exactly one generating point pi and
every point in a given polygon is closer to its gener-
ating point pi than to any other pj (j ≠ i). The set of all
the Voronoi polygons (or cells) is called a Voronoi di-
agram, as shown in Fig. 6. In order to generate such
Voronoi diagrams, we choose to start from an initial
periodic structure where the centers of the cells lie on
a square grid with a period d, and we deform it. For
that purpose, we randomly displace the cell centers
according to a given statistical law. The new grid
structure is defined as the Voronoi diagram obtained
from the displaced cell centers. For example, in Fig. 7
we have represented different grid structures that
correspond to different levels of disorder. They have
been generated by displacing the cell centers so that
each displacement in the x and the y direction is the
realization of a uniform random variable in the inter-
val ½−α=2; α=2�. We define the deformation factor as
follows:

a ¼ α
d
: ð7Þ

Fig. 4. Different phase profiles of the pixelated lens of focal
length f ¼ 2m encoded in different isophase modulators.
(a) γ ¼ 0:05, (b) γ ¼ 0:09, and (c) γ ¼ 0:15.

Fig. 5. (Color online) Lens of focal length f ¼ 2m. Comparison of
the horizontal sections of the diffracted intensity by a regular
square grid (d ¼ 100 μm), an optimal Voronoi grid (a ¼ 1:27) and
by isophases.

Table 1. Lens of Focal Length f ¼ 2ma

S G

Square grid 0.94 -
Isophases 0.97 28
Voronoi (d ¼ 100 μm) 0.92 18

aStrehl ratios S and difference in decibels, denoted G, between
the first-order peak of the square grid and the maximum of the
halo of the studied pixelated grid.

Fig. 6. (Color online) Illustration of a Voronoi diagram composed
of Voronoi cells separated by walls. A Voronoi cell contains exactly
one generating point pi, and every point is closer to its generating
point pi than to any other pj (j ≠ i).

512 APPLIED OPTICS / Vol. 50, No. 4 / 1 February 2011



The grids in Fig. 7 correspond to different values
of a with d ¼ 100 μm. In this figure, we have also
represented the corresponding phase profile when
the SLM implements a lens of phase φdðx; yÞ [see
Eq. (1)] and focal length f ¼ 2m, sampled according
to Eq. (4).

We have represented in Fig. 8 the two-dimensional
angular distribution of the relative intensity in the
focal plane for each modulator represented in Fig. 7,
as well as a cross section in the horizontal direction.
In Fig. 1(a), the grid is square-shaped with pixel
pitch equal to d ¼ 100 μm. The grid structure repre-
sented in Fig. 7(a) corresponds to a small deforma-
tion of the square grid with a parameter a ¼ 0:5. It
is seen in Figs. 8(a) and 8(b) that the amplitudes
of the higher-order peaks are reduced, especially
those located at angles larger than 1°. On the other
hand, a smooth scattered light distribution appears
between the peaks. In the following, we shall call it
the diffraction “halo.”

It should be mentioned that a mean of 20 Voronoi
simulations is shown in order to reduce the variance

of the diffraction pattern and thus estimate more
precisely the evolution of the higher-order peaks.

The grid structure represented in Fig. 7(c) corre-
sponds to a larger deformation factor (a ¼ 1:27). In
the intensity distribution in Figs. 8(c) and 8(d), we
see all the higher-order peaks have disappeared
and the level of the halo has slightly increased. If
a is further increased, as in Fig. 7(e) (a ¼ 1:5), we
see in Figs. 8(e) and 8(f) that the diffraction pattern
remains quasi-identical.

In Fig. 9, we have plotted the evolution of the re-
lative intensities of the order 0 and of the order 1 as a
function of the deformation factor a. We notice that
the order 1 decreases with a and then stabilizes to
a constant value. This evolution is similar to what
was observed in [9], where we have studied diffrac-
tion by the walls of the SLM (without phase function
implemented). The only difference is that, in that
case, after a first minimum for a ¼ 1:27, the curve in-
creases again (the first-order peak reappears) and
reaches local minima around −60 dB for a ¼ l with
l integer and l ≥ 2. In the present case of pixels im-
plementing a specific phase function, we have no
local minima, as can be seen in Fig. 9, but the diffrac-
tion peak height saturates at some nonzero level, due
to the halo, which increases as the focal length of the
pixelated lens decreases. Even the location of the
first minimum of the first-order peak is difficult to
determine. To estimate it, we have used a ninth-
order polynomial expansion for the first 40 values
of the curve represented by a dotted line in Fig. 9.
We obtain the estimated value a ¼ 1:26 for a value
of the first-order peak around −60dB. We conclude
that the evolution of the first-order is similar
whether we consider the walls alone or the filled
structure for a ∈ ½0; 1:27�. A practical consequence
of the results in Fig. 9 is that it is not necessary to
distort the initial grid beyond a ¼ 1:27: the relative
intensity of the first-order peak does not decrease
anymore.

As a result, we define the optimal Voronoi struc-
ture as the one obtained for a ¼ aopt. Since aopt ¼
1:27, the optimal modulator structure is the same
for the pixelated case and the walls only, which is
very interesting in terms of technical design.

The value aopt ¼ 1:27 is obtained when the initial
grid is square-shaped of size d and the cell centers
are moved according to a uniform distribution on a
square of side α ¼ ad. If one chooses another shape
for the initial grid (for example hexagonal), or if
one uses other statistics for the displacement of cell
centers (e.g., uniform on a circle of radius α=2 or
Gaussian with standard deviation α), there is always
a specific value aopt of the deformation parameter
a ¼ α=d, which is in general different from 1.27, that
leads to the disappearance of the higher-order peaks.
The Voronoi grids obtained for these optimal param-
eter values all have the same properties: uniform
orientation of the walls and identical shape and level
of the halo. We have not yet been able to find an
analytical method to determine the value of the

(a) (b)

(c) (d)

(e) (f)
Fig. 7. (Color online) Increase of the randomness of the periodic
distribution of centers, spaced every d ¼ 100 μm (Fig. 1). (a), (c),
and (e) Associated Voronoi diagrams with walls only. Pupil di-
ameter of 4mm. The centers are moved according to a uniform dis-
tribution on a square of side α so that a ¼ 0:5, a ¼ 1:27, and
a ¼ 1:5. (b), (d) and (f) Corresponding Voronoi diagram correcting
a f ¼ 2m lens.
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optimal parameter, and we think that it is an inter-
esting subject for further investigation.

In Fig. 5, we compare a horizontal section of the
relative intensity diffracted by the regular square
grid, the optimal Voronoi grid, and the isophases.
First, we conclude that the optimal Voronoi structure
is better than the square grid in spite of a lower
Strehl ratio (Table 1) because the diffraction peaks
vanish and the level of the halo is 18dB lower. Sec-
ondly, we conclude that the isophase pixelation is the
best choice in this situation because the isophases re-
duce the level of the diffraction halo 10 dB more than
the Voronoi structure and the Strehl ratio is better
(Table 1).

D. Conclusion

The method described in this paper is intended to
reduce the diffraction peaks and to replace them
by a halo. This is beneficial when SLMs are used for

imaging purposes, when the point spread function
includes the order 0 as well as the higher orders
[13,14]. In general, if the scene has a smooth distri-
bution of the luminance, the effect of pixelization on
the resulting image will be low even if the pixels are
periodically distributed, since the higher-order peaks
are at least 10dB below the zero order. On the other
hand, when imaging bright pointlike objects on a
dark background, like a streetlight by night observed
through a periodic SLM prototype (see Fig. 10), high-
er-order peaks are well visible and the slight halo
produced by Voronoi components would be visually
much less annoying in this case.

We have investigated two techniques to reduce the
diffraction peaks. We have shown that, in each case,
it is possible to cancel the main unwanted diffraction
peaks and essentially obtain a smooth diffraction
halo by a suitable choice of parameters (γ for the
isophases and a for Voronoi). As a result, the two

(a) (b)

(c) (d)

(e) (f)
Fig. 8. (Color online) Diffracted intensity by the pixelated Voronoi components implementing a lens of focal length f ¼ 2 in Fig. 7 and the
corresponding cross section in the horizontal direction. (a), (b) a ¼ 0:5. (c), (d) a ¼ 1:27. (e), (f) a ¼ 1:5. Pupil of 4mm diameter.
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techniques are better than a regular square SLM and
are able to reduce the maximal unwanted light level
to less than 50dB below the signal peak. However,
we have also shown that the isophases are bet-
ter than the optimal Voronoi with a gain of 10dB
for the maximum level of the diffraction halo. In
Section 3, we will compare these two techniques for
wavefront correction in order to determine whether
they are equivalent or not when other phase func-
tions are implemented on the SLM.

3. Application to Wavefront Correction

The principle of wavefront correction is presented in
Fig. 11. The idea is to correct a wavefront aberration
with an SLM placed in the pupil of a perfect lens and
illuminated by a monochromatic aberrated wave of

wavelength λ ¼ 0:5 μm propagating parallel to the
optical axis. We observe the distribution of light in-
tensity in the focal plane, which is, in this simple
case, the squared modulus of the Fourier transform
of the modulator’s transmittance. We shall consider
the correction of astigmatism and coma wavefronts,
which are interesting because their phase functions
do not possess the rotational symmetry.

A. Correction of Astigmatism

Let us first consider the case of an astigmatism aber-
ration corresponding to the following phase function:

Fig. 10. (Color online) Night scene observed by a periodic
pixelated prototype.

Fig. 11. Principle of wavefront correction.

Fig. 9. (Color online) Evolution of the relative intensities of the
order 0 and of the order 1 as a function of the parameter a for a
pixelated lens of focal length f ¼ 2m encoded on a Voronoi SLM.
Average of the efficiencies on 20 realizations of two-dimensional
Voronoi components.

(a) (b)

(c) (d)

(e) (f)
Fig. 12. (Color online) Structure of the pixelated modulators
(first column) and the astigmatism wavefront encoded on them
(second column). (a), (b) Regular square grid. (c), (d) Isophases.
(e), (f) Optimal Voronoi grid.
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φastðX ;YÞ ¼ 2AastXY : ð8Þ

We introduce the standardized variables ðX ;YÞ, such
that X ¼ 2x=L, Y ¼ 2y=L, and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
< 1, where

L is the pupil diameter. In order to have the same
maximal slope value as in the case of the pixelated
lens, we differentiate Eqs. (1) and (8), and, for λ ¼
0:5 μm and f ¼ 2m, we obtain Aast ¼ 4π. In Fig. 12,
we present the structure of the SLMs pixelated with
the regular grid, with the isophases, and with the
Voronoi techniques, and the phase function encoded
on them. For the isophases, we choose the optimal γ
so that γ ¼ 0:15 and we use the same optimal Voronoi
structure as the lens (see Subsection 2.C). We repre-
sent, in Fig. 13, a cross section of the relative inten-
sity diffracted by each SLM. The chosen direction is
the horizontal one, where the first-order peak is
maximum.

As for the pixelated lens of Subsection 2.C, we first
conclude that the optimal Voronoi structure is prefer-
able to the square grid in spite of a lower Strehl ratio
(Table 2) because the diffraction peaks vanish and
the level of the halo is 18 dB lower. Second, we con-
clude again that the isophase pixelation is the best
choice in this situation because the isophases reduce
the level of the diffraction halo 4dB more than the
Voronoi structure and the Strehl ratio is better
(Table 2).

Fig. 13. (Color online) Correction of astigmatism. Comparison of
the horizontal sections of the diffracted intensity by a regular
square grid (d ¼ 100 μm), by an optimal Voronoi grid (a ¼ 1:27),
and by isophases.

Table 2. Correction of Astigmatisma

S G

Square grid 0.94 -
Isophases 0.93 22
Voronoi (d ¼ 100 μm) 0.92 18

aStrehl ratios S and difference in dB, denoted G, between the
first-order peak of the square grid and the maximum of the halo
of the studied pixelated grid.

(a) (b)

(c) (d)

(e) (f)
Fig. 14. (Color online) Structure of different pixelated modula-
tors (first column) and the coma wavefront encoded on them
(second column). (a), (b) Regular square grid. (c), (d) Isophases.
(e), (f) Optimal Voronoi grid.

Fig. 15. (Color online) Correction of coma. Comparison of the
vertical sections of the diffracted intensity by a regular square
grid (d ¼ 100 μm), by an optimal Voronoi grid (a ¼ 1:27) and by
isophases.
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B. Correction of Coma

We will now study the case of a coma that corre-
sponds to the following phase function:

φcomaðX ;YÞ ¼ Acomað−2Y þ 3Y3 þ 3X2YÞ: ð9Þ

In order to have the same maximal slope value as in
the case of the pixelated lens, we differentiate Eqs. (1)
and (9), and, for λ ¼ 0:5 μm and f ¼ 2m, we obtain
Acoma ¼ 8π

7 . In Fig. 14, we present the structure of
the SLMs pixelated with the regular grid, with the
isophases, and with the Voronoi techniques, and
the phase function encoded on them. For the iso-
phases, we choose the optimal γ so that γ ¼ 0:1, and
we use the same optimal Voronoi structure as for
the lens and the astigmatism (see Subsection 2.C).
We represent, in Fig. 15, a cross section of the relative
intensity diffracted by each component. This time, the
chosen direction is the vertical one, where the first-
order peak is maximum.

First, we notice that the optimal Voronoi structure
is better than the square grid because the diffraction
peaks vanish and the level of the halo is 15dB lower,
whereas the Strehl ratio has the same value (Table 3).
Second, we point out that it is also better than the
isophases, which only lead to a reduction of the level
of the diffraction halo of 8dB for an essentially iden-
tical Strehl ratio. This fact can be understood by look-
ing at Fig. 16, where the vertical profile of the coma
phase function is represented. Between ½−1mm;

1mm�, this function is a straight line, which means
that, when we slice the three-dimensional curve with
planes z ¼ 2πγ, the intervals between two isophases
are the same. This introduces a periodicity that is at
the origin of diffraction peaks visible in Fig. 15. On
the other hand, with the Voronoi structure, there is
no periodicity and thus no diffraction peak. In this
situation, the Voronoi technique is thus the best
choice.

C. Conclusion

By considering two phase functions without rota-
tional symmetry, we have shown that it was possible
to minimize the diffraction peaks, and essentially ob-
tain a pure diffraction halo by a suitable choice of
parameters for both pixelation techniques. We have
demonstrated that each pixelation technique be-
haves differently depending on the phase function.
With the isophase method, the amount of reduction
of the first-order peak depends heavily on the en-
coded phase function. In unfavorable cases, such
as coma, this reduction may be insufficient. On the
other hand, the Voronoi method has a much more
stable behavior with respect to the encoded phase.

4. Conclusion

As a summary, pixelated diffractive optical elements
used for wavefront shaping suffer distortion due to
the sampling operation itself. In this paper, we have
investigated a new, nonperiodic pixelation technique
derived from the Voronoi tesselation method. Ex-
tending our previous work, where only the Voronoi
pixel walls were considered, we have shown that it
is effective to avoid the far-field diffraction peaks
that occur with periodic sampling. In the cases con-
sidered, at a moderate cost in terms of Strehl ratio,
and with a proper selection of the parameter to gen-
erate the Voronoi map, the diffraction peaks are com-
pletely suppressed at the expense of a modest halo.
To implement wavefront shaping on an SLM, the
method is therefore fairly attractive. On the other
hand, if the aberration is known, no active wavefront
shaping method is required. In that case, if the fab-
rication method involves fixed phase pixels, at least
for some wavefront shapes, the isophase method may
provide better results in that it cancels the far-field
diffraction peaks at a lower cost in terms of halo
buildup.

The present paper was entirely devoted to the de-
sign of structures. The problem of their practical rea-
lization remains to be addressed. A possible way of
solving it could be using photolithographic equip-
ment, and some real devices are under realization
with this technology. An in-depth study of this issue
is an interesting topic for future work.
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