On a maximal inequality for strongly mixing random variables in Hilbert spaces. Application to the compact law of the iterated logarithm. - Laboratoire de Probabilités et Modèles Aléatoires
Article Dans Une Revue Annales de l'ISUP Année : 2008

On a maximal inequality for strongly mixing random variables in Hilbert spaces. Application to the compact law of the iterated logarithm.

Résumé

In this paper, we state a maximal inequality for the partial sums of strongly mixing sequences of Hilbert space valued random variables. This inequality allows to derive the almost sure compactness of the partial sums divided by the normalizing sequence (n log log n)1/2. As a consequence, we derive the compact law of the iterated logarithm under the same condition than the one required in the real case, which is known to be essentially optimal. An application to Cramér-von Mises statistics is given.
Fichier principal
Vignette du fichier
Pages de DEP_8-V-64396_(2008-2010)-4.pdf (4.06 Mo) Télécharger le fichier
Origine Accord explicite pour ce dépôt

Dates et versions

hal-03632218 , version 1 (06-04-2022)

Identifiants

  • HAL Id : hal-03632218 , version 1

Citer

Florence Merlevède. On a maximal inequality for strongly mixing random variables in Hilbert spaces. Application to the compact law of the iterated logarithm.. Annales de l'ISUP, 2008, LII (1-2), pp.47-60. ⟨hal-03632218⟩
160 Consultations
67 Téléchargements

Partager

More