Dimers on Rail Yard Graphs - Laboratoire de Probabilités et Modèles Aléatoires
Article Dans Une Revue Annales de l’Institut Henri Poincaré (D) Combinatorics, Physics and their Interactions Année : 2017

Dimers on Rail Yard Graphs

Résumé

We introduce a general model of dimer coverings of certain plane bipartite graphs, which we call rail yard graphs (RYG). The transfer matrices used to compute the partition function are shown to be isomorphic to certain operators arising in the so-called boson-fermion correspondence. This allows to reformulate the RYG dimer model as a Schur process, i.e. as a random sequence of integer partitions subject to some interlacing conditions. Beyond the computation of the partition function, we provide an explicit expression for all correlation functions or, equivalently, for the inverse Kasteleyn matrix of the RYG dimer model. This expression, which is amenable to asymptotic analysis, follows from an exact combinatorial description of the operators localizing dimers in the transfer-matrix formalism, and then a suitable application of Wick's theorem. Plane partitions, domino tilings of the Aztec diamond, pyramid partitions, and steep tilings arise as particular cases of the RYG dimer model. For the Aztec diamond, we provide new derivations of the edge-probability generating function, of the biased creation rate, of the inverse Kasteleyn matrix and of the arctic circle theorem.
Fichier principal
Vignette du fichier
dimerstat.pdf (878.23 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

cea-01144118 , version 1 (07-11-2022)

Identifiants

Citer

Cédric Boutillier, Jérémie Bouttier, Guillaume Chapuy, Sylvie Corteel, Sanjay Ramassamy. Dimers on Rail Yard Graphs. Annales de l’Institut Henri Poincaré (D) Combinatorics, Physics and their Interactions, 2017, 4 (4), pp.479-539. ⟨10.4171/AIHPD/46⟩. ⟨cea-01144118⟩
386 Consultations
52 Téléchargements

Altmetric

Partager

More