Optimal Transport using Helmholtz-Hodge Decomposition and First-Order Primal-Dual Algorithms - MGMI
Communication Dans Un Congrès Année : 2015

Optimal Transport using Helmholtz-Hodge Decomposition and First-Order Primal-Dual Algorithms

Résumé

This work deals with the resolution of the optimal transport problem between 2D images in the fluid mechanics framework of Benamou and Brenier formulation [1], which numerical resolution is still challenging even for medium-sized images. We develop a method using the Helmholtz-Hodge decomposition [2] in order to enforce the divergence-free constraint throughout the iterations. We then show how to use a first order primal-dual algorithm for convex problems of Chambolle and Pock [3] to solve the obtained problem, leading to a new algorithm easy to implement. Besides, numerical experiments demonstrate that this algorithm is faster than state of the art methods and efficient with real-sized images.
Fichier principal
Vignette du fichier
388-YCmA-301.pdf (286.6 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01134194 , version 1 (23-03-2015)

Identifiants

Citer

Morgane Henry, Emmanuel Maitre, Valérie Perrier. Optimal Transport using Helmholtz-Hodge Decomposition and First-Order Primal-Dual Algorithms. 2015 IEEE International Conference on Image Processing (ICIP), Sep 2015, Quebec City, QC, Canada. pp.4748-4752, ⟨10.1109/ICIP.2015.7351708⟩. ⟨hal-01134194⟩
395 Consultations
561 Téléchargements

Altmetric

Partager

More