On the inconsistency of separable losses for structured prediction - Traitement du Langage Parlé
Communication Dans Un Congrès Année : 2023

On the inconsistency of separable losses for structured prediction

Caio Corro

Résumé

In this paper, we prove that separable negative log-likelihood losses for structured prediction are not necessarily Bayes consistent, or, in other words, minimizing these losses may not result in a model that predicts the most probable structure in the data distribution for a given input. This fact opens the question of whether these losses are well-adapted for structured prediction and, if so, why.
Fichier principal
Vignette du fichier
2023.eacl-main.109.pdf (315.7 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04394967 , version 1 (15-01-2024)

Identifiants

Citer

Caio Corro. On the inconsistency of separable losses for structured prediction. 17th Conference of the European Chapter of the Association for Computational Linguistics, May 2023, Dubrovnik, Croatia. pp.1491-1498, ⟨10.18653/v1/2023.eacl-main.109⟩. ⟨hal-04394967⟩
128 Consultations
33 Téléchargements

Altmetric

Partager

More