Tackling random fields non-linearities with unsupervised clustering of polynomial chaos expansion in latent space: application to global sensitivity analysis of river flooding - Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur
Article Dans Une Revue Stochastic Environmental Research and Risk Assessment Année : 2021

Tackling random fields non-linearities with unsupervised clustering of polynomial chaos expansion in latent space: application to global sensitivity analysis of river flooding

Résumé

Abstract A surrogate model is developed to accurately approximate a two-dimensional hydrodynamics numerical solver in order to conduct a reduced-cost variance-based global sensitivity analysis of the hydraulic state. The impact of uncertainties in river bottom friction and boundary conditions on the simulated water depth is analyzed for quasi-unsteady flows. An autoencoder technique adapted to non-linear variable dimension reduction is used to reduce the multi-dimensional model output so that the formulation of the surrogate remains computationally parsimonious. In addition, following the divide-and-conquer principle, a mixture of local polynomial chaos expansions is proposed to deal with non-linearity in the hydraulic state with respect to uncertain inputs. Machine learning techniques are used to automatically partition the input space into clusters that are not affected by non-linearities and support accurate surrogates. This combined strategy is applied to a reach of the Garonne River where river and floodplains dynamics are simulated by the numerical solver Telemac-2D. The merits of this strategy are highlighted when the flood front reaches regions where the topography features a strong gradient and where, consequently, strong non-linearities occur between the water depth and friction as well as hydrologic input forcing. By applying this strategy, the $$Q_2$$ Q 2 metric improves by 90% compared to a classical polynomial chaos expansion surrogate, resulting in a much more reliable sensitivity analysis. This is particularly important in floodplain areas where human and economic activities are at stake.
Fichier principal
Vignette du fichier
ElGarroussi2021_Article_TacklingRandomFieldsNon-linear.pdf (3.79 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03335023 , version 1 (26-11-2021)

Identifiants

Citer

Siham El Garroussi, Sophie Ricci, Matthias de Lozzo, Nicole Goutal, Didier Lucor. Tackling random fields non-linearities with unsupervised clustering of polynomial chaos expansion in latent space: application to global sensitivity analysis of river flooding. Stochastic Environmental Research and Risk Assessment, 2021, 36, pp.693-718. ⟨10.1007/s00477-021-02060-7⟩. ⟨hal-03335023⟩
289 Consultations
69 Téléchargements

Altmetric

Partager

More