Insights into Photopolymerization at the Nanoscale Using Surface Plasmon Resonance Imaging
Résumé
Near-field photopolymerization (NFPP) driven by surface plasmon resonance has attracted increasing attention in nanofabrication. This interest comes from the nanometer-scale control of polymer thickness, due to the confinement of the evanescent wave within a highly restricted volume at the surface. In this study, a novel approach using a multi-spectral surface plasmon resonance instrument is presented that gives access to real-time images of polymer growth during NFPP with nanometer sensitivity. Using the plasmonic evanescent wave for both polymerization and real-time sensing, the influence of irradiance, concentration of dye, and initiator are investigated on the threshold energy and kinetics of NFPP. How oxygen inhibition in the near field strongly affects photopolymerization is highlighted, more than in the far field.
Domaines
PolymèresOrigine | Publication financée par une institution |
---|