Enhanced convergence rates and asymptotics for a dispersive Boussinesq-type system with large ill-prepared data - Équations aux dérivées partielles
Pré-Publication, Document De Travail Année : 2019

Enhanced convergence rates and asymptotics for a dispersive Boussinesq-type system with large ill-prepared data

Résumé

In this article we prove highly improved and flexible Strichartz-type estimates allowing us to generalize the asymptotics we obtained for a stratified and rotating incompressible Navier-Stokes system: for large (and less regular) initial data, we obtain global well-posedness, asymptotics (as the Rossby number ε goes to zero) and convergence rates as a power of the small parameter ε. Our approach is lead by the special structure of the limit system: the 3D quasi-geostrophic system.
Fichier principal
Vignette du fichier
PEgen9.pdf (407.81 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02050137 , version 1 (26-02-2019)
hal-02050137 , version 2 (13-01-2020)
hal-02050137 , version 3 (02-12-2020)

Identifiants

Citer

Frederic Charve. Enhanced convergence rates and asymptotics for a dispersive Boussinesq-type system with large ill-prepared data. 2019. ⟨hal-02050137v1⟩

Collections

LAMA_EDP
120 Consultations
169 Téléchargements

Altmetric

Partager

More