Straight motion of half-integer topological defects in thin Fe-N magnetic films with stripe domains
Résumé
In thin magnetic films with perpendicular magnetic anisotropy, a periodic “up-down” stripe-domain structure can be originated at remanence, on a mesoscopic scale (~100 nm) comparable with film thickness, by the competition between short-range exchange coupling and long-range dipolar interaction. However, translational order is perturbed because magnetic edge dislocations are spontaneously nucleated. Such topological defects play an important role in magnetic films since they promote the in-plane magnetization reversal of stripes and, in superconductor/ferromagnet hybrids, the creation of superconducting vortex clusters. Combining magnetic force microscopy experiments and micromagnetic simulations, we investigated the motion of two classes of magnetic edge dislocations, randomly distributed in an N2+-implanted Fe film. They were found to move in opposite directions along straight trajectories parallel to the stripes axis, when driven by a moderate dc magnetic field. Using the approximate Thiele equation, analytical expressions for the forces acting on such magnetic defects and a microscopic explanation for the direction of their motion could be obtained. Straight trajectories are related to the presence of a periodic stripe domain pattern, which imposes the gyrotropic force to vanish even if a nonzero, half-integer topological charge is carried by the defects in some layers across the film thickness.
Origine | Publication financée par une institution |
---|