Decoupled conditional contrastive learning with variable metadata for prostate lesion detection - Département Image, Données, Signal
Communication Dans Un Congrès Année : 2023

Decoupled conditional contrastive learning with variable metadata for prostate lesion detection

Résumé

Early diagnosis of prostate cancer is crucial for efficient treatment. Multi-parametric Magnetic Resonance Images (mp-MRI) are widely used for lesion detection. The Prostate Imaging Reporting and Data System (PI-RADS) has standardized interpretation of prostate MRI by defining a score for lesion malignancy. PI-RADS data is readily available from radiology reports but is subject to high inter-reports variability. We propose a new contrastive loss function that leverages weak metadata with multiple annotators per sample and takes advantage of inter-reports variability by defining metadata confidence. By combining metadata of varying confidence with unannotated data into a single conditional contrastive loss function, we report a 3% AUC increase on lesion detection on the public PI-CAI challenge dataset.
Fichier principal
Vignette du fichier
Workshop_MICCAI_2023 (1).pdf (480.37 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence
Copyright (Tous droits réservés)

Dates et versions

hal-04183841 , version 1 (21-08-2023)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Camille Ruppli, Pietro Gori, Roberto Ardon, Isabelle Bloch. Decoupled conditional contrastive learning with variable metadata for prostate lesion detection. MILLanD - MICCAI Workshop, Oct 2023, Vancouver, Canada. ⟨hal-04183841⟩
176 Consultations
49 Téléchargements

Altmetric

Partager

More