Galois theory for analogical classifiers - Hybrid Approaches for Interpretable Artificial Intelligence
Article Dans Une Revue Annals of Mathematics and Artificial Intelligence Année : 2023

Galois theory for analogical classifiers

Résumé

Analogical proportions are 4-ary relations that read “A is to B as C is to D”. Recent works have highlighted the fact that such relations can support a specific form of inference, called analogical inference. This inference mechanism was empirically proved to be efficient in several reasoning and classification tasks. In the latter case, it relies on the notion of analogy preservation. In this paper, we explore this relation between formal models of analogy and the corresponding classes of analogy preserving functions, and we establish a Galois theory of analogical classifiers. We illustrate the usefulness of this Galois framework over Boolean domains, and we explicitly determine the closed sets of analogical classifiers, i.e., classifiers that are compatible with the analogical inference, for each pair of Boolean analogies.
Fichier principal
Vignette du fichier
Galois_theory4AC (4).pdf (483.88 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence

Dates et versions

hal-03665625 , version 1 (12-05-2022)
hal-03665625 , version 2 (14-01-2023)

Licence

Identifiants

Citer

Miguel Couceiro, Erkko Lehtonen. Galois theory for analogical classifiers. Annals of Mathematics and Artificial Intelligence, inPress, ⟨10.1007/s10472-023-09833-6⟩. ⟨hal-03665625v2⟩
120 Consultations
108 Téléchargements

Altmetric

Partager

More