Article Dans Une Revue Data Mining and Knowledge Discovery Année : 2024

WaveLSea: helping experts interactively explore pattern mining search spaces

Résumé

This article presents the method Wave Top-k Random-d Lineage Search (WaveLSea) which guides an expert through data mining results according to her interest. The method exploits expert feedback, combined with the relation between patterns to spread the expert’s interest. It avoids the typical feature definition step commonly used in interactive data mining which limits the flexibility of the discovery process. We empirically demonstrate that WaveLSea returns the most relevant results for the user’s subjective interest. Even with imperfect feedback, WaveLSea behavior remains robust as it primarily still delivers most interesting results during experiments on graph-structured data. In order to assess the robustness of the method we design novel oracles called soothsayers giving imperfect feedback. Finally, we complete our quantitative study with a qualitative study using a user interface to evaluate WaveLSea.
Fichier principal
Vignette du fichier
sn-article.pdf (4.62 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04589011 , version 1 (27-05-2024)

Identifiants

Citer

Etienne Lehembre, Bruno Crémilleux, Albrecht Zimmermann, Bertrand Cuissart, Abdelkader Ouali. WaveLSea: helping experts interactively explore pattern mining search spaces. Data Mining and Knowledge Discovery, 2024, 38, pp.2403-2439. ⟨10.1007/s10618-024-01037-8⟩. ⟨hal-04589011⟩
109 Consultations
36 Téléchargements

Altmetric

Partager

More