Insulating properties of materials for Medium Voltage Direct Current applications
Propriétés des matériaux isolants pour application dans les appareillages moyenne tension à tension continue
Résumé
Recent advancements in direct-current technology from the high-voltage transport and low-voltage consumption have brought medium-voltage DC (MVDC) to the forefront. This thesis delves into the insulating DC properties of two commonly used materials in distribution equipment: epoxy filled with silica and silicone rubber.In a monolayer configuration, each material underwent extensive investigation, focusing on water sorption characteristics and electrical conduction. Current measurements were conducted to analyze conduction under various fields, temperatures, and water uptake conditions. Additionally, the Laser Pressure Pulse (LIPP) method was employed for space charge measurements as a complementary technique. The study extended to a bilayer configuration, combining both materials, with insights from monolayer experiments informing the properties of the bilayer and predicting field distribution.The DC conduction in epoxy exhibited high dependence on water absorption, with moisture influencing non-linearity and altering the conduction mechanism. Conversely, silicone demonstrated electrode-limited conduction, with current variations tied to water sorption through a saturation-limited mechanism. In a hypothetical bilayer configuration, where epoxy represents a type-C bushing and silicone serves as the cable termination, the field is expected to concentrate in the epoxy in dry environments, shifting to silicone as humidity increases. The thesis concludes with discussions on material selection strategies and the design of multi-layer configurations.
Les récentes avancées dans la technologie du courant continu, du côté du transport à haute tension et de la consommation à basse tension, ont propulsé le courant continu de moyenne tension (MVDC) au premier plan. Cette thèse explore les propriétés isolantes en courant continu de deux matériaux couramment utilisés dans l'équipement de distribution : de l'époxy chargé en micro-silice et le silicone elastomère.Dans une configuration monocouche, chaque matériau a fait l'objet d'une enquête approfondie, mettant l'accent sur les caractéristiques de sorption d'eau et la conduction électrique. Des mesures de courant ont été effectuées pour analyser la conduction dans divers niveaux de champs, à différentes températures et conditions d'absorption d'eau. De plus, la méthode Laser Pressure Pulse (LIPP) a été utilisée pour des mesures de charge d'espace en tant que technique complémentaire. L'étude s'est étendue à une configuration bicouche, combinant les deux matériaux, nous permettant ainsi de confirmer un modèle prédisant les propriétés du multicouche et sa distribution de champs en fonction des valeurs des monocouches.La conduction en courant continu dans l'époxy a montré une forte dépendance à l'absorption d'eau, l'humidité influençant la non-linéarité et modifiant le mécanisme de conduction. À l'inverse, le silicone a démontré une conduction limitée par l'électrode, avec des variations de courant liées à la sorption d'eau par le biais d'un mécanisme limité par saturation. Dans une configuration bicouche hypothétique, où l'époxy représente un manchon et le silicone sert de terminaison de câble, le champ est censé se concentrer dans l'époxy dans des environnements secs, passant au silicone à mesure que l'humidité augmente. La thèse se conclut par des discussions sur les stratégies de sélection des matériaux et la conception de configurations multicouches.
Origine | Version validée par le jury (STAR) |
---|