Analytic Model for the Energy Spectrum of the Anharmonic Oscillator - Fédération de recherche « Matière et interactions »
Pré-Publication, Document De Travail Année : 2024

Analytic Model for the Energy Spectrum of the Anharmonic Oscillator

Résumé

In a recent work we have proposed an original analytic expression for the partition function of the quartic oscillator. This partition function, which has a simple and compact form with {\it no adjustable parameters}, reproduces some key mathematical properties of the exact partition function and provides free energies accurate to a few percent over a wide range of temperatures and coupling constants. In this work, we present the derivation of the energy spectrum of this model. We also generalize our previous study limited to the quartic oscillator to the case of a general anharmonic oscillator. Numerical application for a potential of the form $V(x)=\frac{\omega^2}{2} x^2 + g x^{2m}$ show that the energy levels are obtained with a relative error of about a few percent, a precision which we consider to be quite satisfactory given the simplicity of the model, the absence of adjustable parameters, and the negligible computational cost.
Fichier principal
Vignette du fichier
paper_revised_clean.pdf (349.53 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04705550 , version 1 (23-09-2024)

Licence

Identifiants

  • HAL Id : hal-04705550 , version 1

Citer

Michel Caffarel. Analytic Model for the Energy Spectrum of the Anharmonic Oscillator. 2024. ⟨hal-04705550⟩
19 Consultations
10 Téléchargements

Partager

More