A new reactive absorption model using extents of reaction and activities. II. Application to CO 2 absorption into aqueous MDEA solutions
Résumé
Absorption into basic aqueous solutions is widely used for CO 2 separation from raw natural gas or from flue gases. This study implements a general steady-state model for reactive gas-liquid absorption. This work expands upon a first case study where the model was applied with the stagnant film theory (Whitman, 1923) to alkaline salts-water-CO 2 systems. This second case study uses the resulting Arrhenius expression to examine published CO 2 absorption and desorption flux data in MDEA-water-CO 2 system. Arrhenius parameters are optimised for the reaction CO 2 + MDEA + H 2 O ↔ HCO 3-+ MDEAH + with lnk (m 3 .mol-1 .s-1) = 16.69-6385/T (K). Results emphasise the role of CO 2 physical solubility representation in reactive absorption model overall performance. Global modelling is needed: kinetic parameters should be used together with all underlying parameters with which they were obtained. The relevance of activity-based modelling is shown, especially at high CO 2 absorption/desorption driving force.
Fichier principal
Article modélisation cinétique et MDEA Vfinale.pdf (941.89 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|