A Kleene algebra with tests for union bound reasoning on probabilistic programs - Symbolic analysis and Component-based design for Modular Real-Time Embedded Systems
Pré-Publication, Document De Travail (Preprint/Prepublication) Année : 2023

A Kleene algebra with tests for union bound reasoning on probabilistic programs

Résumé

Kleene Algebra with Tests (KAT) provides a framework for algebraic equational reasoning on imperative programs. The recent variant Guarded KAT (GKAT) allows to reason on non-probabilistic properties of probabilistic programs. Here we introduce an extension of this framework called aGKAT (approximate GKAT), a form of graded GKAT over a partially ordered monoid (real numbers) which enables to express satisfaction of (deterministic) properties except with a probability up to a certain bound. This allows to represent in equational reasoning 'à la KAT' proofs of probabilistic programs based on the union bound, a technique from basic probability theory. We show how a propositional variant of approximate Hoare Logic (aHL), a program logic for union bound, can be soundly encoded in our system aGKAT. We then illustrate the use of aGKAT on an example of accuracy analysis from the field of differential privacy.
Fichier principal
Vignette du fichier
csl23_tech_rep.pdf (482.21 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04196675 , version 1 (05-09-2023)
hal-04196675 , version 2 (29-07-2024)

Identifiants

  • HAL Id : hal-04196675 , version 1

Citer

Leandro Gomes, Patrick Baillot, Marco Gaboardi. A Kleene algebra with tests for union bound reasoning on probabilistic programs. 2023. ⟨hal-04196675v1⟩

Collections

CRISTAL-SYCOMORES
199 Consultations
112 Téléchargements

Partager

More