The Non-Cancelling Intersections Conjecture - CRISTAL-LINKS
Pré-Publication, Document De Travail Année : 2024

The Non-Cancelling Intersections Conjecture

Mikaël Monet
  • Fonction : Auteur
  • PersonId : 1085321
Dan Suciu
  • Fonction : Auteur
  • PersonId : 1224933

Résumé

In this note, we present a conjecture on intersections of set families, and a rephrasing of the conjecture in terms of principal downsets of Boolean lattices. The conjecture informally states that, whenever we can express the measure of a union of sets in terms of the measure of some of their intersections using the inclusion-exclusion formula, then we can express the union as a set from these same intersections via the set operations of disjoint union and subset complement. We also present a partial result towards establishing the conjecture.
Fichier principal
Vignette du fichier
2401.16210v1.pdf (348.4 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence

Dates et versions

hal-04603239 , version 1 (06-06-2024)

Licence

Identifiants

Citer

Antoine Amarilli, Mikaël Monet, Dan Suciu. The Non-Cancelling Intersections Conjecture. 2024. ⟨hal-04603239⟩
246 Consultations
22 Téléchargements

Altmetric

Partager

More