Exponential stability of solutions to the Schrödinger-Poisson equation - Centre Henri Lebesgue
Article Dans Une Revue Discrete and Continuous Dynamical Systems - Series A Année : 2024

Exponential stability of solutions to the Schrödinger-Poisson equation

Résumé

We prove an exponential stability result for the small solutions of the Schrödinger-Poisson equation on the circle without exterior parameters in Gevrey class. More precisely we prove that for most of the initial data of Gevrey-norm smaller than $\varepsilon$ small enough, the solution of the Schrödinger-Poisson equation remains smaller than $2\varepsilon$ for times of order $exp(\alpha |\log \varepsilon|^2 / \log |\log \varepsilon|)$. We stress out that this is the optimal time expected for PDEs as conjectured by Jean Bourgain in [Bou04].
Fichier principal
Vignette du fichier
Manuscript.pdf (589.32 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04256956 , version 1 (24-10-2023)
hal-04256956 , version 2 (06-11-2023)

Identifiants

Citer

Joackim Bernier, Nicolas Camps, Benoît Grébert, Zhiqiang Wang. Exponential stability of solutions to the Schrödinger-Poisson equation. Discrete and Continuous Dynamical Systems - Series A, 2024. ⟨hal-04256956v2⟩
98 Consultations
73 Téléchargements

Altmetric

Partager

More